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Abstract 
 

Geothermal reservoir performance is critical to successful production of energy from geothermal resources. It is highly dependent 
upon a variety of factors, including reservoir types, fluid properties, rock properties, temperature, structural geology, stratigraphy, and 
others. Drilling of the well field and construction of the associated fluid collection and processing system is one of the largest costs of 
developing a geothermal resource. Proper conceptual modeling of the geothermal resource is necessary to optimize the design of the 
subsurface and surface geothermal energy production system. When done correctly, we can maximize the return on investment of our 
development dollars. Furthermore, we can use this information to better maintain the ‘health’ of our reservoirs and wells. We can also 
improve and optimize well and reservoir productivity, providing additional return on our geothermal investments. This paper outlines 
some of the interactions between geothermal reservoirs and their associated stratigraphies. The resultant effects upon reservoir 
performance as seen at the wellhead are discussed in detail. 

Copyright © AAPG. Serial rights given by author.  For all other rights contact author directly.
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Factors
Many factors influence geothermal reservoir performance:
• Reservoir type
• Fluid properties
• Rock properties
• Temperature
• Structural geology
• Stratigraphy
• Others
This paper focuses on stratigraphy, specifically cap rock.
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For the investigations described in this paper, a model 
comprising a 4-layer stratigraphic column was used:

• Atmosphere (cool, partially-saturated, heat sink)
• Cap rock (warm, porous, saturated, insulator)
• Reservoir rock (hot, porous, saturated fluid source)
• Basement rock (hot, porous, saturated heat source)

An Idealized
Geothermal System
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Pressure Gradients
Of Cold Water Systems

Pressure Gradients of Cold Water Systems
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Pressure Gradients
Of Geothermal Systems

Pressure Gradients of Geothermal Systems
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Temperature Gradients
Of Geothermal Systems

Temperature Gradients of Geothermal Systems
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Natural State Modeling
Natural State Modeling
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Temperature Profiles
vs. Cap Rock

(0 to 1600 m Depth)

Temperature Profiles vs. Cap Rock Thickness
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Temperature Profiles
vs. Cap Rock

(0 to 400 m Depth)

Temperature Profiles vs. Cap Rock Thickness
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Temperature Profiles
vs. Cap Rock

(0 to 200 m Depth)

Temperature Profiles vs. Cap Rock Thickness
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Pressure Profiles
vs. Cap Rock

(0 to 1600 m Depth)

Pressure Profiles vs. Cap Rock Thickness
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Pressure Profiles
vs. Cap Rock

(0 to 400 m Depth)

Pressure Profiles vs. Cap Rock Thickness
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Pressure Profiles
vs. Cap Rock

(0 to 200 m Depth)

Pressure Profiles vs. Cap Rock Thickness
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Vapor Saturation
Profiles vs. Cap Rock

(0 to 400 m Depth)

Vapor Saturation Profiles vs. Cap Rock Thickness
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Vapor Saturation
Profiles vs. Cap Rock

(0 to 200 m Depth)

Vapor Saturation Profiles vs. Cap Rock Thickness
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Deliverability Curves

Well Deliverability Curves
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Thermal Power Curves

Well Power Curves
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Conclusions
Cap rock thickness is a key factor in the formation and 

performance of geothermal reservoirs.
While geothermal reservoirs can form without the presence of a 

cap rock layer, these will tend to be cool, small, and unstable.
Geothermal reservoirs with thin cap rock layers will tend to be 

hotter, larger, and less stable than those without any cap rock.
There seems to be a ‘critical thickness’ above which the reservoir 

becomes progressively more stable.
With cap rock layers of sufficient thickness and integrity, we will 

probably see little or no surface temperature elevation and few 
or no surface expressions; theoretically, this proves the 
probable existence of many ‘hidden reservoirs’.
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