Geology and Geochemistry of the Al Lajjun Oil Shale Deposit, Central Jordan*

Jerry C. DeWolfe¹, Emmett J. Horne² and Christopher A. Morgan³

Search and Discovery Article #50366 (2010) Posted December 17, 2010

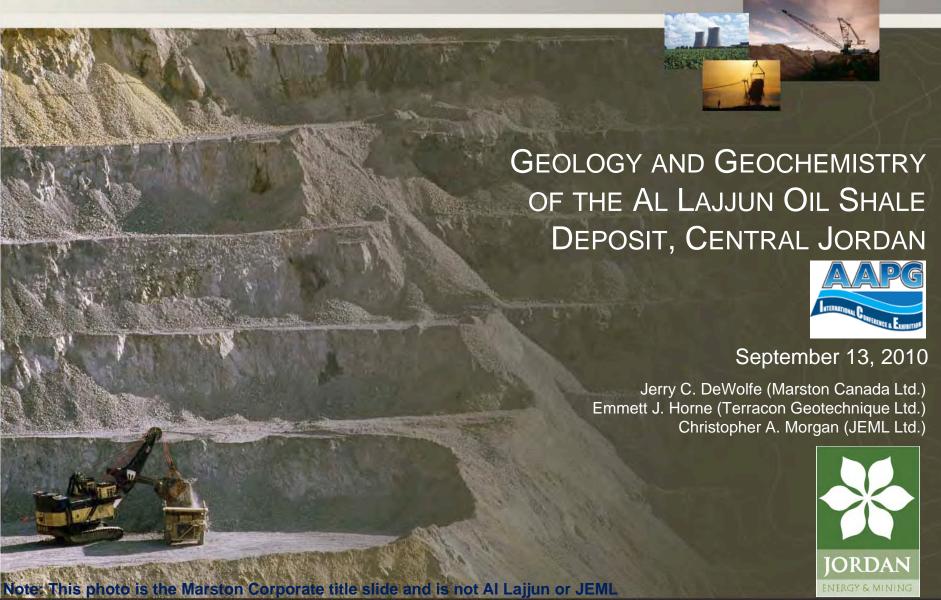
Abstract

The Al Lajjun Oil Shale Deposit is located approximately 110 km south of the Jordanian capital of Amman. Al Lajjun is one of 26 oil shale deposits occurring in the sedimentary basins of Central Jordan. Jordan is ranked 8th in the world with identified oil shale resources in excess of 65 billion tonnes; however, to date no commercial hydrocarbon production from Jordanian oil shale has taken place. Jordan has no conventional hydrocarbon resources and relies entirely on imports from neighbouring countries; market and political factors have highlighted oil shale as a potential domestic hydrocarbon source to meet Jordanian demands.

The Al Lajjun Oil Shale Deposit was discovered in the late 1960's by a joint Jordanian-German geological study. In the decades following discovery intermittent exploration activity at Al Lajjun has resulted in 198 drill holes totaling in excess of 11 km of drilling. Recent estimates for the entire Al Lajjun deposit have identified approximately 1 billion tonnes of oil shale resources at a mean grade of 11 wt. % oil (standard Fischer assay).

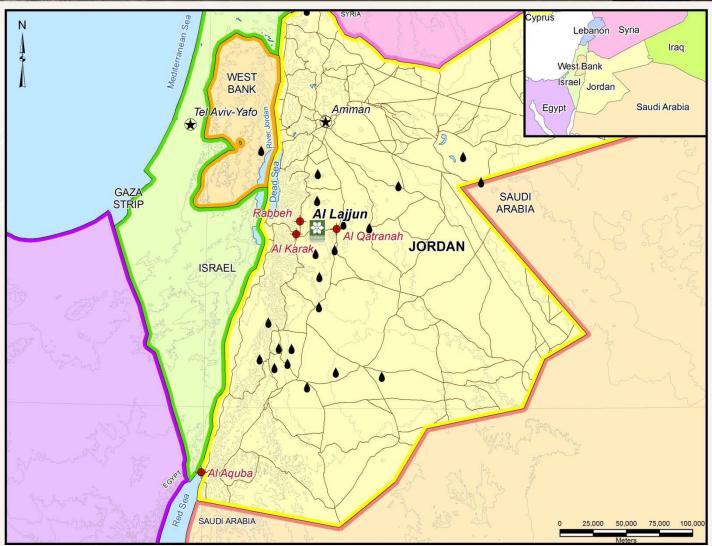
Al Lajjun is categorized as a Marinite oil shale deposit, hosted by marine sedimentary rocks of the Belqua Group that were deposited as syn-tectonic basin infill within the late Cretaceous to early Paleocene Al Lajjun Graben. The oil shale occurs as massive beds of brown-black, kerogen-rich chalk-marl that comprise the ~30 m thick Lower Member of the Muwaqqar Chalk-Marl Formation (MCM). The Lower Member is overlain by ~30 m of barren chalk-marl known as the Upper Member of the MCM. Differential throw on the graben bounding faults resulted in asymmetric graben floor that is tilted slightly to the west. Strata in the graben are subhorizontal with dips typically in the 2-4 degree range. Micropaleontological studies indicate the depositional age of the MCM is transitional between Masstrichian to Paleocene, with deposition of the oil shale bearing Lower Member occurring during Masstrichtian to Danian time.

This presentation focuses on reviewing the regional and deposit scale stratigraphic and structural controls on oil shale deposition along with the oil shale geochemical characteristics. The aim is to evaluate the hydrocarbon production potential of the Al Lajjun Oil Shale Deposit via surface mining and pyrolysis processing methods.

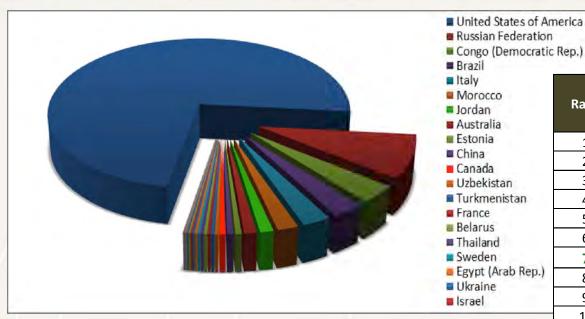

^{*}Adapted from oral presentation at AAPG Conference and Exhibition, Calgary, Alberta, Canada, September 12-15, 2010

¹Marston Canada Ltd., Calgary, AB, Canada. (jdewolfe@marston.com)

²Terracon Geotechnique Ltd, Calgary, AB, Canada.


³Jordan Energy and Mining Ltd., London, United Kingdom.

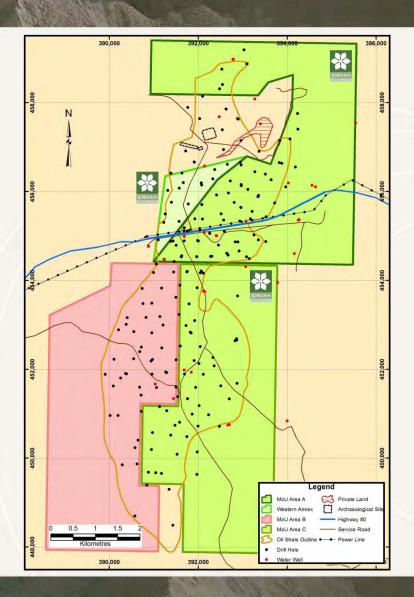
Al Lajjun Oil Shale Deposit, Central Jordan



Global Oil Shale Resources

"Jordan (as a non-producing oil country) imports 97% of its energy needs..." (Alali 2006)

ata	Source: 20	07 Survey	of Energy	Resources.	World E	Eneray C	ouncil


	Rank	Country	In-Situ Shale Oil Resources (million barrels)
	1	United States of America	2,085,000
	2	Russian Federation	248,000
	3	Congo (Democratic Rep.)	100,000
	4	Brazil	82,000
	5	Italy	73,000
	6	Morocco	53,000
	7	Jordan	34,000
	8	Australia	32,000
	9	Estonia	16,000
	10	China	16,000
	11	Canada	15,000
	12	Uzbekistan	8,000
	13	Turkmenistan	8,000
	14	France	7,000
	15	Belarus	7,000
	16	Thailand	6,000
	17	Sweden	6,000
	18	Egypt (Arab Rep.)	6,000
	19	Ukraine	4,000
	20	Israel	4,000
Ĺ		Global Total	2,826,000

Al Lajjun Oil Shale Deposit

Description	Deposit Total
Overburden Tonnes (Mt)	1050
Oil Shale Tonnes (Mt)	900
Stripping Ratio (tonnes:tonnes)	1.2
Oil Grade (wt%)	11%
Oil Yield (L/tonne)	111
SCO Volume (million barrels)	~615
Total Organic Carbon (wt%)	13%
Total Sulphur (wt%)	3%
Free Moisture (wt%)	3-6%

Al Lajjun Area

• Precipitation: 340 mm annually

• Elevation: 590-840 m (amsl)

Population Al Lajjun: <1,000

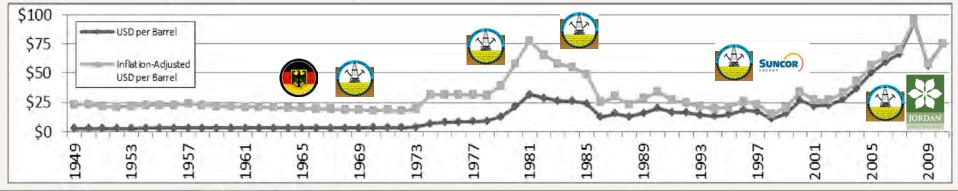
Governorate of Al Karak: 204,000

Land use: Livestock grazing

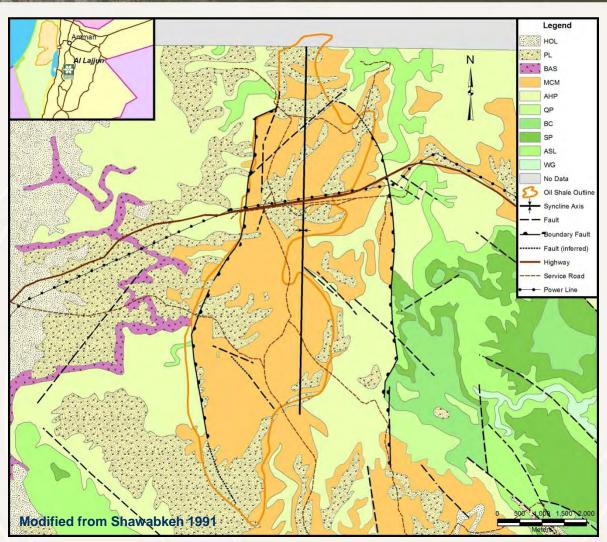
Infrastructure: paved HWY & power lines

Mosque, school, & pumping station

Roman ruins



Al Lajjun Exploration History

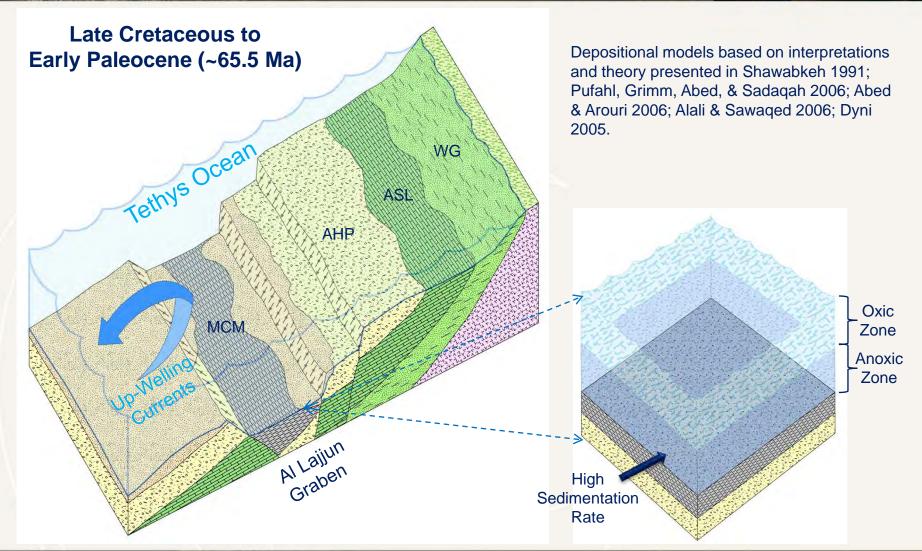


Regional Geology Map

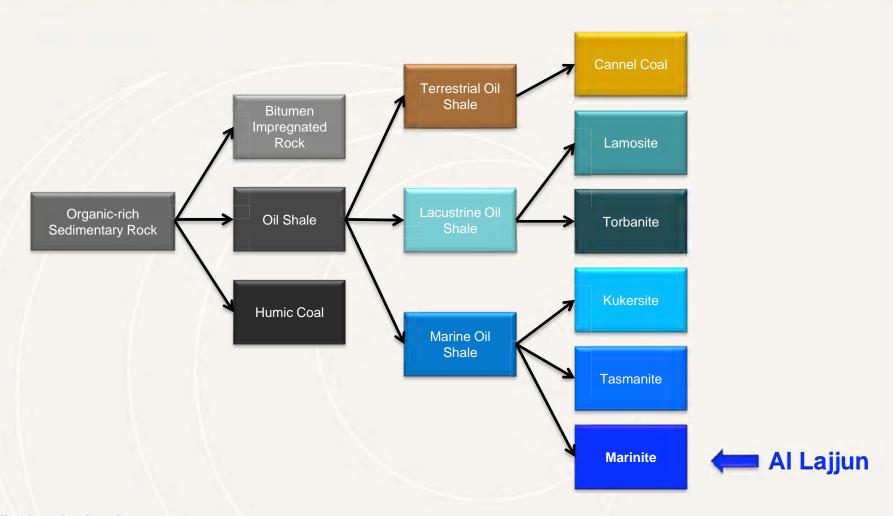
mer	me e	E po	se to	0 0	0 m
Eonothe	Erathem Era	System	Series Epoch	Stage	Age
		-	Holocene		0.0117
		Quaternary		Upper	0.000
		terr	Distance	"lonian"	0.126
		Sua	Pleistocene	Calabrian	0.781
		0		Gelasian	1.806
			Pliocene	Piacenzian	2.588
		d)		Zanclean	3.600
				Messinian	5.332
		Neogene	Miocene	Tortonian	7.246
	ic	og		Serravallian	11.608
	enozoic	Se		Langhian	13.82
	0			Burdigalian	15.97
	9			Aquitanian	20.43
O	O			Chattian	23.03
0			Oligocene	Rupelian	28.4 ±0.1
0		-		Priabonian	33.9 ±0.1
anerozoi		ne	Eocene Eocene	Bartonian	37.2 ±0.1
_		ge		Lutetian	40.4 ±0.2
ha		lec		Ypresian	48.6 ±0.2
۵		Pa	Ра		Thanetian
			Paleocene	Selandian	58.7 ±0.2
					~ 61.1
				Danian	65.5 ±0.3
				Maastrichtian	70.6 ±0.6
	sozoic			Campanian	83.5 ±0.7
			Upper	Santonian	85.8 ±0.7
			Оррег	Coniacian	~ 88.6
		Cretaceous		Turonian	93.6 ±0.8
				Cenomanian	99.6 ±0.9
		eta		Albian	112.0 ±1.0
	N e	Cre		Aptian	1
	2		Yamas	Barremian	125.0 ±1.0 130.0 ±1.5
			Lower	Hauterivian	1000
				Valanginian	~ 133.9
				Berriasian	140.2 ±3.0 145.5 ±4.0

HOL PL BAS

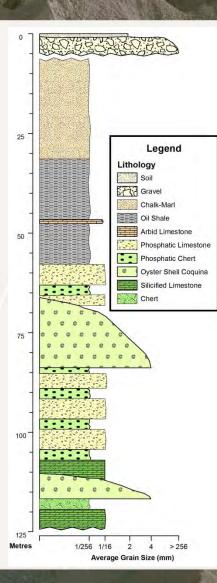
MCM (CM) MCM (OS) AHP ASL WG


Modified from ICoS 2009

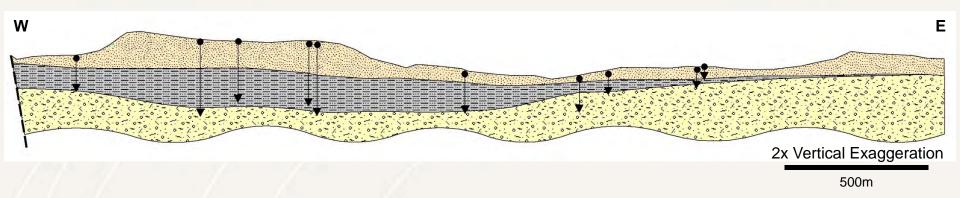
Depositional Environment



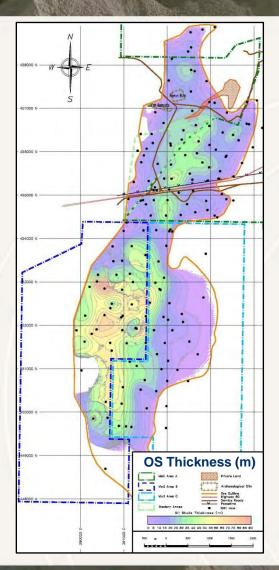
Oil Shale Classification

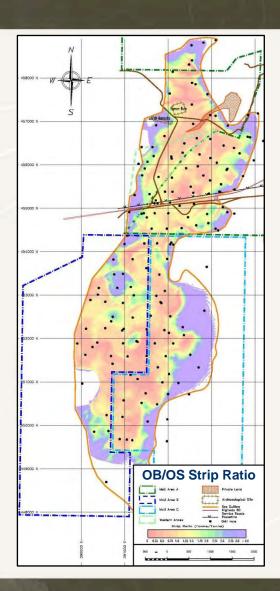

Modified from Dyni 2005

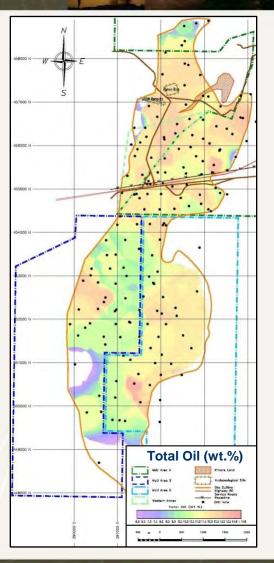
Al Lajjun Local Geology



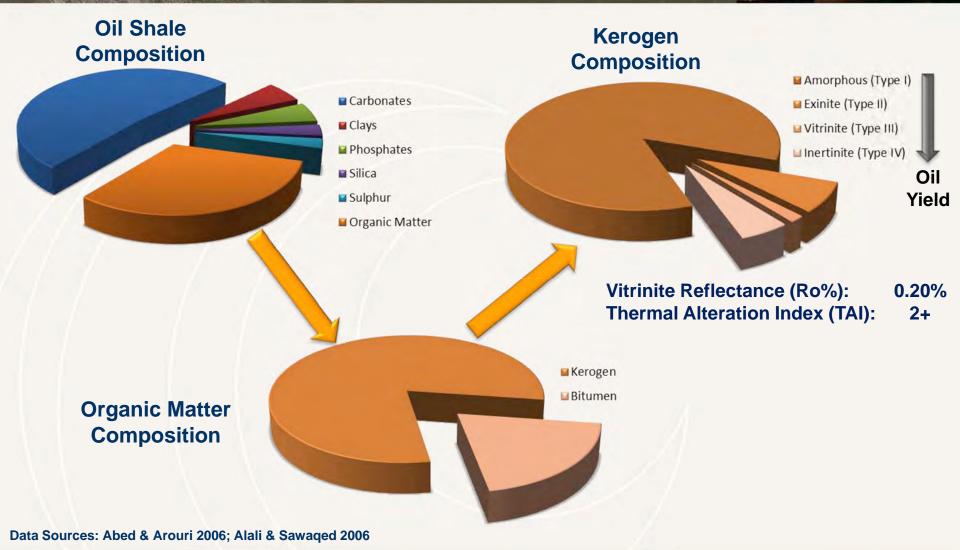
Typical Al Lajjun Geological Cross Section



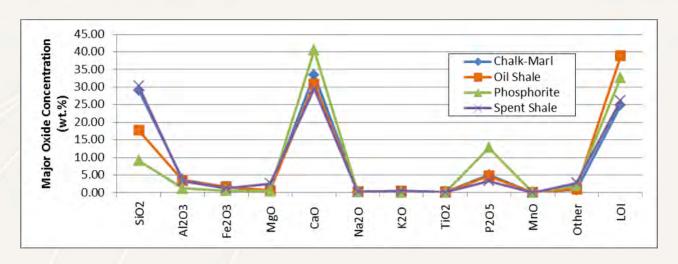

Unit	Mean Thickness (m)	Minimum Thickness (m)	Maximum Thickness (m)	Mean Density (g/cc)
Oil Shale	28	0	86	1.87
Chalk Marl	21	1	71	2.10
Total OB (Chalk Marl+Alluvium)	30	1	110	2.10

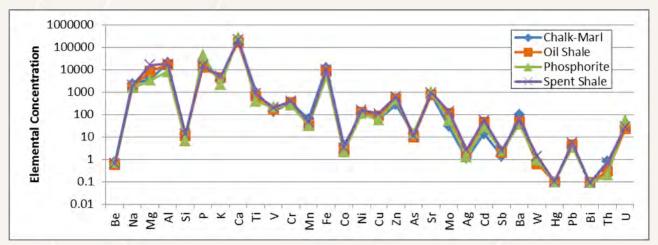

Overall Stripping Ratio ~ 1:1 (tonnes OB: tonnes OS)

Al Lajjun Contour Maps



Al Lajjun Oil Shale Composition





Al Lajjun Oil Shale Composition

Al Lajjun Oil Shale Assay Data

Description	Mean
Oil Grade (wt.%, SFA - ZFM)	11%
Oil Density (g/ml)	0.9791
Oil Yield (L/tonne)	111
Total Organic Carbon (wt.%)	13%
CaCO ₃ (wt.%)	54%
Total Sulphur (wt.%)	3%
Free Moisture (wt.%)	3%
Calorific Value (kcal/kg)	1637
Calorific Value (BTU/Lb)	2946
Oil Shale Density (g/cc)	1.87

Al Lajjun Summary

- ~ 65.5 Ma Marinite-type oil shale deposit
- Deposited in restricted basin formed by Al Lajjun Graben
- Depth, thickness, grade, location all favourable for surface mining methods
- ATP Pilot Plant and upgrading analysis favourable for SCO production
- Excellent Opportunity and Potential Solution for Jordanian Oil Supply

Acknowledgements & References

www.jeml.co.uk

REFERENCES

- Abed & Arouri 2006; Characterization and Genesis of Oil Shales from Jordan, rtos-A121.
- Alali 2006; Jordan Oil Shale, Availability, Distribution, and Investment Opportunity, rtos-A117
- Alali & Sawaged 2006; Oil Shale Resources Development in Jordan, Natural Resources Authority Report.
- Dyni 2005; Geology and Resources of Some World Oil-Shale Deposits, USGS Report 2005-5294.
- International Commission on Stratigraphy (ICS) 2009; International Stratigraphic Chart.
- Pufahl, Grimm, Abed, & Sadaqah 2006; Upper Cretaceous (Campanian) Phosphorites in Jordan: Implications for the Formation of a South Tethyan Phosphorite Giant, Sedimentary Geology v.161.
- Shawabkeh 1991; The Geology of the Adir Area, Natural Resources Authority, Bulletin 18.

