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Abstract 
 
Outcrops of Permian carbonates in the Guadalupe Mountains, Permian Basin, provide an ideal laboratory for examining the impact 
of shelf physiography and sequence-scale accommodation on carbonate grainstone bodies. Key variables effecting grainstone 
development are oceanographic parameters (wind and tidal current regimes, ocean water chemistry) and the physiography of the 
shelf, along with the accommodation setting of the platform which controls the style of preservation in the stratigraphic record. As 
the ~2 km thick shelf-to-basin exposure defining the western margin of the outcrops maintains a constant orientation and stable 
basin/climatic setting, it is possible to focus on variation in grainstone development with respect to shelf physiography and systems-
tract facies partitioning across twenty-eight high-frequency sequences (HFS) and over 100 cycles. Grainstone bodies within the San 
Andres (G1-9HFS), Grayburg (G10-12HFS), Queen (G13-14HFS), upper Yates (G24-26HFS), and Tansill (G27-28HFS) shelf strata 
are available for analysis at the cycle-scale. 
 
San Andres (G1-4) ramps display ramp-crest strike-parallel grainstone bars with low (2-10m) relief, dip-widths of 0.1-2 km, average 
bedform size of 0.2 m, and fine-medium-grained fusulinid-ooid composition. Grayburg transitional ramp-rim profiles, with their 
steeper, higher-relief/energy margins, contain both wave- and tide-dominated sand-bodies with dip dimension (0.5-5 km), bedform 
size up to 2 m, and are medium-coarse grained mixed intraclastic-oolitic deposits. Queen-Tansill reef-rimmed profiles have 0.1-0.5 
km dip-width wave-dominated grainstone elements set up by the focused wave impact 0.5 km or less from the abrupt shelf edge. 
Early-lithified vadose-tepee-modified storm berms stabilize this profile and set up a dramatic grain-size distribution from back-
barrier lagoonal stromatolitic mudstones through the shoal complex and seaward to outer shelf packstones in less than 1 km. 
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Sequence-scale accommodation variations control the vertical and lateral stacking of grainstones, impacting connectivity of facies 
elements. Dramatic variations in stacking are observed from ramp systems where TST tide-dominated grainstones contrast with 
seaward-prograding wave-dominated HST foreshore-upper shoreface sheet sands. Steep-rimmed systems where bathymetry limits 
progradation are dominated by vertical stacking of grainstone bodies. 
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Notes by Presenter: This talk will provide important generalizations concerning carbonate reservoir geology and sequence 
stratigraphy that are considered fundamental predictive attributes useful when exploring for or developing resources in these complex 
systems. 
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Controls 1 – Accommodation and 
Facies Proportions/Preservation



Controls 2 - Variation in Shelf Profile
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Controls 3 – Cycle-Scale Diagenesis 
controlling Depositional Architecture
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distribution, Exumas
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Wolfcampian-Guadalupian Sequence 
Framework, Guadalupe Mts.
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Sequence Setting and Depositional 
Profile of Data Sets

San Andres
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Tansill
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•Constant shelf orientation
•Changing profile, ramp, transitional, and 
reef-rimmed margins
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Distribution of Grainstone Windows
Algerita/Lawyer

Shattuck Gbg/Queen

Plowman Grayburg

McKittrick Yates
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Grainstone Geobody Data
• Grainstone geobodies restricted to cross-bedded or 

current-laminated facies as seen in outcrop
• Geobody outline captured through combination of 

mapping and section-measuring
• Data recorded as 2D dip length vs. maximum 

thickness…..limited understanding of strike 
variability, map pattern
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San Andres Lawyer Canyon
Lawyer Canyon
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San Andres Lawyer Canyon – Low 
Angle Ramp
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•Constant shelf orientation
•Constant basinal configuration
•Changing profile, ramp, transitional, and 
reef-rimmed margins
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Variation in Shelf Profile
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San Andres Lawyer Canyon with LIB 
Low P/A system
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San Andres Grainstone Dimensions 
Note TST vs HST Breakout
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San Andres Lawyer Canyon, Foreshore-
Shoreface systems with Hi P/A
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Grayburg – Plowman Ridge

Plowman Ridge
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Grayburg Plowman: Transitional 
Ramp-Rim Profile
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Variation in Shelf Profile
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Plowman Ridge Grayburg
Barnaby and Ward (2007)
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Dimensional Data, Plowman Ridge
Note TST vs HST Breakout
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Shattuck Wall - Queen

Shattuck Queen
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Shattuck Queen – Early Rimmed
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Queen Grainstone Geobodies
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Distribution of Grainstone Windows

McKittrick Yates
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McKittrick Yates
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Variation in Shelf Profile
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Yates Storm-Ridge Setting
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Outer shelf crest facies thru 
outer shelf 246 m wide
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Yates Storm-Ridge Related Foreshore 
Grainstones
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Controls on Grainstones –
Shelf Profile
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Cycle-scale Diagenetic Modification of 
Depositional Profile
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Early-cemented storm ridge constrains grainstone dimension in Yates Margin

Early-cemented Pleistocene Islands control 
ooid tidal delta lobe distribution



Accommodation Control on Grainstones

• Sequence-scale accommodation control has clear 
impact on grainstone dimensions, as well as 
abundance
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Conclusions

• Grainstone dimensions vary over 2 orders of 
magnitude in response to evolving depositional 
profile and linked diagenesis

• Key factors controlling dimensions include
• Systems-tract-linked accommodation
• Ramp to rim evolution and distribution of wave 

energy
• Diagenetic modification of depositional profile
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