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Abstract 
 
The application of mathematical modeling in sedimentological studies is still in its infancy for practical purposes due to several reasons: 
complexity of the problems, lack of theoretical models, simplicity and drawbacks of mathematical models, and suspicion by the geological 
community. Despite that, the growing evidence of these studies as a complementary approach is being demonstrated by the increasing number 
of papers dealing with the subject in the last years. 
 
The mechanism of turbulent flows transporting and depositing a huge amount of sand is a good example of a relevant problem being 
investigated by numerical models. Historically, Depth‐Averaged models have been extensively used to represent the Navier‐Stokes equation 
that governs fluid flows. The Depth‐Average models are a simplified version in the sense that they do not take into account the vertical 
variability of flow properties. More recently, Direct Numerical Simulations (DNS) have been used, in which the full 3D Navier‐ Stokes is 
solved, allowing the vertical reproduction of the flow properties as well as the complete scale representation of the turbulence, because of the 
adoption of very refined grid. The main drawback of the DNS is the computational time, because the full 3D equation is solved for a grid built 
to represent every scale of the turbulence. This alternative reduces the ability to simulate geological situations, because of the time involved 
for reproducing each flow. 
 
In this work we present a method to simulate a full 3D Navier ‐ Stokes equation in unstructured grids, in which the turbulence is solved only 
for the larger scales, with a technique named Large Eddy Simulation (LES). This allows the reproduction in 3D of the flow properties, and it 
can be run in a significantly coarser grid than the DNS. 
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The sedimentation obtained in our model is quantitatively validated against the more precise DNS results. We implemented a dynamic 
interaction between the flow and the bottom that allows the flow to be influenced by the previous sedimentation, either in one or multiple 
flows, without the necessity of remeshing. 
 
We validate the reproduction of the depositional elements (lobes and channel levee systems) against quantitative outcrop data, and we 
performed a preliminary comparative study of steady vs. unsteady flows. We also tested the flow over irregular surfaces, mimicking real 
cases, benefiting from the unstructured grid characteristics to deal with complex geometries. 
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Objectives

of the Work:

• intend to apply a new way to solve a known problem

of the presentation:

• present the code

• show a quantitative validation

• show some qualitative results
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1 – MOTIVATION

Based on inspection in the literature, we can arbitrarily classify the 
turbidite numerical models in two general trends:

a – LAYER – AVERAGED MODELS

- 2D models
- use vertically averaged velocity and concentration
- no explicit turbulence model
- easy to handle
- run very fast

b – 3D – DIRECT NUMERICAL SIMULATIONS

- 3D model
- 3D description of velocity and concentration profile
- turbulence solved in all scales
- difficult to handle (need parallel super-computers)
- run very slowly
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1 – MOTIVATION

We developed a turbidite numerical model in which:
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--- all turbulent scales includedall turbulent scales includedall turbulent scales included
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We developed a turbidite numerical model in which:

a – LAYER – AVERAGED MODELS

--- 2D models2D models2D models
--- use the vertical mean velocity and concentrationuse the vertical mean velocity and concentrationuse the vertical mean velocity and concentration
--- simplified turbulent modelsimplified turbulent modelsimplified turbulent model
--- easy to handleeasy to handleeasy to handle
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b – 3D – DIRECT NUMERICAL SIMULATIONS

--- 3D model3D model
--- 3D description of velocity and concentration profile3D description of velocity and concentration profile3D description of velocity and concentration profile
--- all turbulent scales includedall turbulent scales includedall turbulent scales included
--- difficult to handle (need paralel superdifficult to handle (need paralel superdifficult to handle (need paralel super---computers)computers)computers)
--- run very slowlyrun very slowlyrun very slowly

C – 3D Large Eddy Simulation – FINITE ELEMENT METHOD

- 3D model
- Solve large scale turbulence (model low scale)
- Run much faster than DNS
- Easily deals with complex topography
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2 – DEFINING THE PROBLEM

Manica (2009)

Concentration

Shale
fraction
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Concentration

Shale
fraction

REGION I  Characteristic:

Low concentration
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THIS CODE Characteristic:

Low concentration
No shale

Concentration

Shale
fraction
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2 – DEFINING THE PROBLEM

Main Aspects of the Current 

Geometry:

Instabilities: 

-KH (Kelvin - Helmholtz)
-Lobes and clefts

Del Rey (2006)

Ooi (2006)
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3 – NUMERICAL MODEL – 2 sets of EQUATIONS

1 – INCOMPRESSIBLE NAVIER-STOKES EQUATION

 .. 
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B –mass conservation

A – momentum conservation
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3 – NUMERICAL MODEL
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on density differences 
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3 – NUMERICAL  MODEL – SCALAR TRANSPORT

2 - ADVECTION – DIFUSION EQUATION OF THE CONCENTRATION
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3 – NUMERICAL  MODEL – SCALAR TRANSPORT

2 - ADVECCTION – DIFUSION EQUATION OF THE VARIABLE DENSITY
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TURBULENCE CONSIDERATION

1 – DNS (Direct Numerical Simulation )

- Extremely refined mesh. NSE solves turbulence explicitly in all scales

2 – LES (Large Eddy Simulation )

- Refined mesh. NSE solves turbulence in the mesh scale. Sub-mesh
scale is modeled

Explicit LES – An adittional dissipation models
the sub-mesh effects

Implicit LES – The numerical method dissipation models
the sub-mesh effects

3 – NUMERICAL  MODEL 
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4 – SAND TRANSPORT AND DEPOSITION 
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4 – SAND TRANSPORT AND DEPOSITION 

- incorporation of fall velocity (us) on the transport equation
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- calculation of the volume deposited for every time-step for each mesh element
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4 – SAND TRANSPORT AND DEPOSITION 

- incorporation of fall velocity (us) on the transport equation

sediment flow at the very bottom
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5  – DEPOSITION 

VALIDATION

1 – DNS PLANAR CASE

NECKER, F., HARTEL, C., KLEISER, L., MEIBURG, E., 2002, “High-resolution 
simulations of particle-driven gravity currents”. International Journal of 
Multiphase Flow, v. 28, pp. 279-300. 
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5  – DEPOSITION 

VALIDATION

1 – DNS PLANAR CASE

x = 19 units
y = 2   units
z = 2   units
Re = 103

REFERENCE MODEL (DNS):     63,648,000 POINTS   (25x  bigger)

THIS WORK:                                 2,530,090 POINTS

g

0
L1

L3

sL1

sL3
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5  – DEPOSITION 

VALIDATION

3 CRITERIA OF COMPARISON

A – Visual aspect of the current

B – Sedimentation rate

C – Sedimentation volume along x direction
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5  – DEPOSITION 

VALIDATION

COMPARISON CRITERIA

A – Visual aspect of the current

DNS reference This work
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VALIDATION
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rate

Blue – DNS reference
Red – This Work
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5  – DEPOSITION 

VALIDATION

COMPARISON CRITERIA

C – Sedimentation volume along x direction

x

volume
deposited

Blue – DNS reference
Red – This Work

General Comparison:

- good reproduction of the 
shape of the curves;

- bad reproduction of details 
(smooth effect caused by
differences in the mesh refinement)
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6  – FLOW - BOTTOM INTERACTION

WHAT IS IT ??   Create an interaction of the current and the bottom during the flow

Geometrical aspect
Physical aspect
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6  – FLOW - BOTTOM INTERACTION

WHAT IS IT ??

Initial position of the mesh

elements at the bottom
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6  – FLOW - BOTTOM INTERACTION

WHAT IS IT ??

Initial position of the mesh

General situation during simulation

elements of the bottom

elements at the bottom
with sediments
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6  – FLOW - BOTTOM INTERACTION

HOW TO CONSIDER ??

Geometrical Aspect

elements at the bottom
with sediments
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6  – FLOW - BOTTOM INTERACTION

HOW TO CONSIDER ??

Geometrical Aspect

elements of the bottom
with sediments

elements at the bottom
FILLED with sediments
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6  – FLOW - BOTTOM INTERACTION

HOW TO CONSIDER ??

Geometrical Aspect

elements of the bottom
with sediments

elements of the bottom
FILLED with sediments

NEW elements 
at the bottom
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6  – FLOW - BOTTOM INTERACTION

HOW TO CONSIDER ??

Physical Aspect: Rheology of mixtures (water & sediments).

Changes in viscosity of the elements
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6  – FLOW - BOTTOM INTERACTION

HOW TO CONSIDER ??

Physical Aspect: Rheology of mixtures (water & sand particles).
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6  – FLOW - BOTTOM INTERACTION

HOW TO CONSIDER ??

Physical Aspect: Rheology of mixtures (water & sand particles).
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6  – FLOW - BOTTOM INTERACTION

HOW TO CONSIDER ??

Physical Aspect: Rheology of mixtures.

velocity 
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6  – FLOW - BOTTOM INTERACTION

Hydrodynamic effect
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6  – FLOW - BOTTOM INTERACTION

Hydrodynamic effect
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6  – FLOW - BOTTOM INTERACTION
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7  – CASE STUDIES

FRONTAL SPLAYS 

Elements: 1,121,125
Nodes:         238,472

Lx = 4
Ly = 4
Lz  = 1
Lock = 0.65 x 0.50
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7  – CASE STUDIES

FRONTAL SPLAYS
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7  – CASE STUDIES

FRONTAL SPLAYS

Anisotropy Ratio

Aspect RatioAnisotropy Ratio = Length / Width

Aspect Ratio = Width / Thickness
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7  – CASE STUDIES

FRONTAL SPLAYS

Anisotropy Ratio
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7  – CASE STUDIES

FRONTAL SPLAYS – PULSE - CONTINUOUS FLOW
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Comparação Vel. Media
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7  – CASE STUDIES

FRONTAL SPLAYS – PULSE - CONTINUOUS FLOW

PULSE CONTINUOUS

Percentage of deposit 
material

0.81 0.50

Concentration of material 
in suspensio

0.030 0.046

Distance of deposit 2.14 1.23
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7  – CASE STUDIES

FRONTAL SPLAYS – PULSE - CONTINUOUS FLOW

PULSE CONTINUOUS

Percentage of deposit 
material

0.81 0.50

Concentration of material 
in suspension

0.030 0.046

Distance of deposit 2.14 1.23

waning
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7  – CASE STUDIES                                                   Click to view movie.

FRONTAL SPLAYS – PULSE - CONTINUOUS FLOW

PULSE CONTINUOUS

Percentage of deposit 
material

0.81 0.50

Concentration of material 
in suspension
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Distance of deposit 2.14 1.23
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7  – CASE STUDIES

FRONTAL SPLAYS – PULSE - CONTINUOUS FLOW
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7  – CASE STUDIES

FRONTAL SPLAYS – PULSE - CONTINUOUS FLOW

pulse flume 
experiments

continuous flume 
experiments

sharp curve
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Elements: 1,121,125
Nodes:         238,472

Lx = 4
Ly = 4
Lz = 1
Lock = 0.65 x 1.00

7  – CASE STUDIES

LEVEE CONSTRUCTION
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7  – CASE STUDIES

LEVEE CONSTRUCTION
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7  – CASE STUDIES

LEVEE CONSTRUCTION
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LEVEE CONSTRUCTION
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Straub & Mohrig (2008) – Levee Constuction Model

Case B - Main deposition inside the channel
R goes down   - Taper goes up

7  – CASE STUDIES

LEVEE CONSTRUCTION – QUALITATIVE APPROACH
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Straub & Mohrig (2008)

Case B - Main deposition inside the channel
R goes down   - Taper goes up

7  – CASE STUDIES

LEVEE CONSTRUCTION – QUALITATIVE APPROACH
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• LES is less accurate than DNS, as seen in the results, either in the visual 
inspection or in the more quantitative sedimentation rate and spatial 
distribution; 

• LES could provide very realistic models in simple configurations, in 2 hours 
time simulation running in less than 25 cores;

• some sedimentological results could be discussed, like different 
geometries generated by flow characteristics in a levee configurations, as 
well as a different deposition aspects related to pulse x continuous flows;

• LES, when compared to DNS, proved to be useful for the study of
sedimentological characteristics of deposits, for very simple cases;

8  – CONCLUSIONS



75

OUTLINE:

1 1 1 ––– MOTIVATIONMOTIVATIONMOTIVATION

2 2 2 ––– DEFINING THE PROBLEMDEFINING THE PROBLEMDEFINING THE PROBLEM

3 3 3 ––– NUMERICAL MODELNUMERICAL MODELNUMERICAL MODEL

4 4 4 --- SAND TRANSPORT AND DEPOSITIONSAND TRANSPORT AND DEPOSITIONSAND TRANSPORT AND DEPOSITION

5 5 5 ––– DEPOSITIONDEPOSITIONDEPOSITION

6 6 6 --- FLOW FLOW FLOW --- BOTTOM INTERACTIONBOTTOM INTERACTIONBOTTOM INTERACTION

7 7 7 --- CASE STUDIESCASE STUDIESCASE STUDIES

8 8 8 --- CONCLUSIONSCONCLUSIONSCONCLUSIONS

9 – NEXT STEPS



76

We envisage: 

• Simulation of multiple grain sizes; 

• Erosional model;

• More precise turbulence models

• A more robust quantitative validation scheme 
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• Simulation of multiple grain sizes; 
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