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Abstract 
 

Sandy-mass-transport deposits (SMTD), composed of sandy slides, sandy slumps, and sandy debrites, are common in both modern 
deep-water environments and in ancient rock record. Petroleum-producing SMTDs have been documented from the Bay of Bengal, 
West African margin, North Sea, offshore Mid-Norway, Gulf of Mexico, California, and Brazil.  Criteria for recognizing SMTDs have 
been developed from description 

 

of over 10,000 m of conventional cores and outcrops (1:20 to 1:50 scale), which include cores from 
32 deep-water sandstone petroleum reservoirs worldwide (e.g., Shanmugam et al., 1994 and 1995; Shanmugam, 2006).  

Incongruous classifications of gravity-driven processes, without a unified concept, have resulted in at least 76 different types of mass-
transport processes and related nomenclature with overlapping and confusing meanings. This plethoric lexicon includes four types of 
slumps, five kinds of landslides, five types of flow slides, and nine kinds of creeps. Dott’s (1963) classification, based on mechanical 
behavior, into (1) elastic (rock fall), (2) elastic and plastic (slide and slump), (3) plastic (debris flow), and (4) viscous fluid (turbidity 
current) types is the most meaningful and practical scheme for interpreting the ancient mass-transport deposits (MTD). The 
underpinning principle of this classification is the separation of solid from fluid behavior. In the solid (elastic and plastic) mode of 
transport, high sediment concentration is the norm (25-100% by volume).   In contrast, turbidity currents are characterized by low 
sediment concentration (1-25% by volume). In this scheme, mass-transport processes do not include turbidity currents. Other 
classifications, based on sediment-support mechanisms (Middleton and Hampton, 1973) and transport velocity (Varnes, 1958 and 
1978), are flawed and impractical. There are no objective criteria for interpreting velocities of mass-transport processes in the ancient 
rock record. Therefore, the interpretation of fast-moving debris avalanches (Wynn et al., 2000; Lewis and Collot, 2001) from seismic 
data and bathymetric images is untenable. 
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Sandy mass-transport deposits, with sand content of over 20% by volume, can be recognized in conventional cores and outcrops. 
Sandy slides exhibit (1) basal primary glide planes, (2) basal shear zones, (3) sand injections, (4) internal secondary glide planes, (5) 
internal fabric changes, and (6) sharp upper contacts. Sandy slumps show (1) slump folds, (2) deformed units interbedded with 
undeformed layers, (3) chaotic sands with deformed clasts, (4) sharp upper contacts, and (5) sand injections. Sandy debrites comprise 
(1) thick amalgamated massive sands, (2) sharp basal contacts, (3) inverse grading, (4) floating quartz granules, (5) floating mudstone 
clasts and armored mudstone balls, (6) planar and random clast fabrics, (7) contorted layers, (8) sand injections, and (9) sharp and 
irregular upper contacts. On RMS seismic amplitude maps, SMTDs exhibit variable planform geometries, but show sharp margins. 
Sandy debrites exhibit both sinuous and lobate planform geometries. Cross-sectional geometries vary from sheet to lenticular types. 
On wireline logs, SMTDs exhibit a wide range of log motifs (e.g., blocky, upward-fining, upward-coarsening, etc.). In the absence of 
conventional cores, however, there are no objective criteria for distinguishing sandy slides, sandy slumps, and sandy debrites on 
seismic profiles or on wireline logs. 

 
In the offshore Krishna-Godavari (KG) Basin (Bay of Bengal, India), a depositional model has been proposed for deep-water 
petroleum reservoir sands (Pliocene) based on examination of 313 m of conventional cores from three wells (Shanmugam et al., 
2009). These upper-slope sands are composed primarily of SMTDs. Sandy debrites occur as sinuous canyon-fill massive sands, inter-
canyon sheet sands, and canyon-mouth lobate sands. Reservoir sands, composed mostly of amalgamated units of sandy debrites, are 
thick (up to 32 m), low in mud matrix (less than 1% by volume), and high in measured porosity (35-40%) and permeability (850-
18,700 mD). In the KG Basin, frequent tropical cyclones, tsunamis, earthquakes, shelf-edge canyons with steep-gradient walls of more 
than 30°, and seafloor fault scarps are considered to be favorable factors for triggering mass movements.  
 
Earthquakes (e.g., the 1929 Grand Banks earthquake off the U.S. Atlantic coast and Canada), meteorite impacts (e.g., the Chicxulub 
impact at K-T boundary in the Yucatan, Mexico), volcanic activities (e.g., Hawaiian Islands), tsunamis (e.g., the 2004 Indian Ocean 
tsunami), tropical cyclones (e.g., the 2005 Category 5 Hurricane Katrina in the Gulf of Mexico), and monsoon flooding events (e.g., 
Bay of Bengal) initiate SMTDs suddenly in a matter of hours or days. These sediment failures commonly occur during highstands 
(Shanmugam, 2008). Therefore, the skewed emphasis of sea-level lowstand model, representing thousands of years, is irrelevant for 
understanding deep-water SMTDs. 
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Mechanical Behavior
Elastic             Plastic Fluid

Slide & Slump Debris flow Turbidity current

Mass Transport

Individual particles

Aggregate of particles (mass)
(Dott, 1963; Based on Varnes,1958)
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Bulk Stress vs. Particle Concentration
In Granular Material



(Krynine, 1948; Bagnold, 1956; Varnes, 1958; Dott, 1963; Sanders, 1965; 
Middleton, 1967; Shanmugam, 2006). Figure from Shanmugam et al., (1994).
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32 Sandstone Petroleum Reservoirs 
SMTD & BCR: 99%; Turbidites: 1%

Rock Description of Deep-water Facies
1974-2010: >33,000 ft (10,000 m)



Euphemism for SMTD
(1) High-density turbidite
(2) Fluxoturbidite 
(3) Seismoturbidite
(4) Megaturbidite 
(5) Atypical turbidite

(Shanmugam, 1996, JSR)
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(Shanmugam, 2006)
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Turbidite Myth
Mudstone clasts have lower density  
than quartz sand (2.65 g/cm 3) 

1. Density of deep-sea clays:
2.41 to 2.72 g/cm3

(Opreanu, 2003-2004)

2. Inclusions

The Reality
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Intercanyon-Sheet Geometry
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Reservoir Quality
Pliocene SMTD

KG Basin

• Thick & Clean Sand
• Porosity: 35-40%
• Perm.: 850-18,691 mD

(Shanmugam, Shrivastava & Das, 2009)



Triggering of MTD
1. Earthquakes
2. Meteorite impact
3. Volcanism 
4. Tsunamis
5. Tropical cyclones
6. Monsoon flooding
7. Tectonic oversteepening
8. Glacial loading
9. Salt movements 
10. Sedimentation
11. Biologic erosion
12. Wildfire
13. Gas hydrates
14. Sea-level lowstand

Hours to Days

1000s of yrs



Paleocene
Wilcox Trend
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(Map from Meyer et al., 2007)

MTD (K-T)
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Chicxulub 
65.5 Ma

(Schulte et al., 
2010, Science)



Conclusions

• Recognition: Based on the Rocks
• Geometry: Sheet, sinuous, & lobate
• Reservoir Quality: Good
• Sea-Level Models: Irrelevant



Look at the Rocks
Please!!!

THANK YOU




