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Abstract 
 
Controls affecting the depositional style within intraslope minibasins include glacially-controlled sea-level fluctuatons (eustacy), the 
dynamic 3D movement of basin-confining salt (halokinetic), and the alternation between depocenters (autocyclic). In this study, 
three-dimensional seismic-data from minibasins of Western Green Canyon (northern Gulf of Mexico) record the interplay of 
eustatically and halokinetically controlled depositional processes. 
 
The ~500 sq. mile study area comprises two salt-confined minibasins that are separated by an extensional fault. Six laterally extensive 
seismic surfaces interpreted as condensed sections were used to define intervals of stratigraphy up to 5 seconds. Interval analysis 
reveals the two minibasins to have previously behaved as one single, larger basin. This single-basin morphology was initially altered 
by salt emergence then subsequently by extensional faulting. These changes in basin morphology acted to divide the two minibasins. 
Both stages of salt emergence and extensional faulting affected resultant depositional architectures, and topographically steered 
basin-filling events. 
 
Deposits observed within these intervals include mass-transport deposits (MTD), turbidite sheets, overbank accumulations, and 
hemipelagic drapes. We categorize the intervals as being eustatically and halokinetically controlled, and show how their period of 
deposition correlates to just 4 glacially controlled global highstands. Intervals identified as being eustatically controlled are punctuated 
by hemipelagic drapes, turbidite sheets, channelized regions, and mass-transport deposits. The absence of mass-transport deposits in 
one eustatically controlled interval may be due to the proximal location of the study area relative to the shelf edge. One interval 
identified as halokinetically controlled comprises widespread mass-transport deposits and turbidite sheets that accumulated during a 
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period of considerable fault movement. It is likely that the faulting was driven by salt dynamics, which also led to mass wasting on 
over-steepened basin margins at salt upwellings, thus creating high frequency mass-transport complexes. 
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Northern Gulf of Mexico Bathymetry
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Presently, the basins are confined, but during deposition of 
the interval of interest, that was much less true

What is the architecture of the 
basin fill?

What depositional processes led 
to basin accumulation?

Why did the basin fill in this 
way? 

Can we determine the controls 
of the basin fill?



Basin Introduction
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Pleistocene Sea Level Fluctuations

Redrawn from:
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Gradstein et al.., 
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Controls on depositional style

1. Sea Level Change

Redrawn from
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Controls on depositional style

2. Halokinetic Autocyclicity

Redrawn from Madof et al., 2009
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Potential Basin Fill Driving Mechanisms

Eustatic Control

Would expect to see alternating deposits punctuated by condensed sections:
Condensed Section
MTD
Frontal Splay
Channel Complexes
MTD
Condensed Section

Halokinetic Control

Patterns of sedimentation governed by 3D motion of salt:
Hemipelagites & Muddy turbidites
Intrabasinal MTDs
Interbedded with organized turbidite systems



Horizon Selection
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Interval Timing & Sedimentation Rates
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Interval 2: Sedimentary History
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Interval 2

Channel complexes18 miles
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Interval 2 - Channel complexes – pre-date salt dome
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Confined Channel - Evidence for salt emergence?
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Interval 3
18 miles
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Interval 3 – Channelized region
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Interval 3 – Channel Complex
& Spillover

18 miles

27

miles

Proportional  Slice

A A’

A

12.6 miles

A’

3000 ft



18 miles

27 

miles

Proportional  Slice

6 milesTime 
/ms

2600

3000

3400

A A’

A

12.6 miles

A’

3000 ft

Interval 3 – Channel Complex
& Spillover



Interval 4
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Interval 4
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Summary of intervals

Interval 2 – Weakly Confined
Ponded sheets, MTDs, Channel complexes

Interval 3 – Intermediate ?
Draped sheet deposits, fault-steered channel complex

Interval 4 – Confined
Alternating sheet and mass-transport deposits

Documents -Salt emergence
-Increased channel confinement
-No fault movement

Documents -Continued salt emergence
-Presence of fault
-Fault movement negligible

Documents -Basin-wide deposition
-Extreme cyclicity in deposits
-Considerable fault movement



Driving Mechanism Summary

Eustatic Control

1. Doesn’t account for all condensed sections
2. Should ponded sheets be first phase of fill in all intervals?
3. Might explain why MTDs all apparently sourced from North?

Halokinetic Control
1. Accounts for sheet/MTD alternating deposits in interval 4
2. Also doesn’t account for all interpreted condensed sections 
3. Ties salt emergence to increased frequency of MTDs

Not surprisingly, we see both controls active in this basin 
during deposition of the studied intervals.



Conclusions

1. Basin fill comprises:

Unconfined Turbidites

Channel Complexes

MTDs

Hemipelagite

2. The basin fill is cyclic in nature 

3. Cyclicity is controlled by:
(i) salt interplay – dominantly?

(ii) glacially controlled sea level changes

Next Steps:  Forward stratigraphic model basins




