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Abstract 
 
Ancient epeiric sea deposits commonly exhibit lateral gradients in chemistry that are a reflection of spatial variation in environmental 
conditions. Such gradients place constraints on paleocirculation patterns and may be used to define regions of chemically distinct 
water masses termed “aquafacies” in which the residence time of a proxy is less than the oceanic mixing time. Tracers such as Nd 
isotopes and clay-mineral assemblages provide evidence of spatial variation in the provenance of the detrital fraction. Oxygen 
isotopes can provide information concerning spatial variation in watermass δ18O (e.g., as a function of salinity variation) or 
temperature. Carbon isotopes, although subject to more numerous controls, can provide information about spatial variation in marine 
primary productivity and carbon cycling. Various proxies including DOP, trace metals, and FeT/Al have been used to discern spatial 
gradients in paleoredox conditions. All of these proxies provide indirect clues to paleocirculation patterns, although such information 
has rarely been integrated in a systematic manner, even for those few ancient epeiric seas that have been extensively studied to date, 
such as the Late Ordovician Mohawkian Sea1.  
 
We are in the early stages of an integrated data-model study of the North American "Midcontinent Sea" (Middle-Late Pennsylvanian) 
that will investigate spatial gradients in the proxies above for the purpose of evaluating the robustness of model simulations of 
paleocirculation patterns. This sea provides a useful case study for internal circulation in ancient epeiric seas owing to its large area 
(~2.1 x 106 km2 at highstands), relatively uniform seafloor bathymetry, and pronounced lateral gradients in sediment geochemistry. 
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Circulation patterns in epeiric seas
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Proxies for circulation patterns in ancient epeiric seas

Elemental Isotopic Other Proxies

δ13Ccarb

δ13Corg

δ18O
δ15N

εNd
87Sr/86Sr

Trace metals 
(Mo, U, etc.)

REEs

Mineral assemblages
Organic fraction

(maceral types,
biomarkers,
Rock Eval parameters)



Well-mixed aqueous species Poorly mixed aqueous species

Sr,         ~5,000 kyr
Mo,        ~750 kyr
DIC,       ~80 kyr

Os,          ~5-10 kyr
Nd,          ~0.3 kyr
DOC,       <0.1 kyr

τ
τ
τ

τ
τ
τ

Particulates (clays, OM, pyrite):        < few yearsτ

RESIDENCE  TIMES  OF  PROXIES  IN  SEAWATER

Spatial variation in proxy residence time

Seawater,                       ~750,000 yr
Cariaco Basin,                ~320,000 yr
Black Sea,                        ~80,000 yr
Saanich Inlet,                    ~15,000 yr
Framvaren Fjord,                ~1,000 yr

τ
τ
τ
τ

τ
RESIDENCE  TIMES:  SEAWATER  VS.  RESTRICTED BASINS

Aqueous Mo
residence times
(of deep water for
restricted basins)

Key factor:
Proxy residence time
versus watermass
mixing time

Immenhauser
et al. (2008)
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“Aquafacies” – Chemically distinct watermasses
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Wells et al. “Numerical Modeling of Tides in the Late Pennsylvanian Midcontinent Seaway 
of North America with Implications for Hydrography And Sedimentation” (JSR, 2007)

Bathymetry of Late Pennsylvanian Midcontinent Sea

Relatively shallow
depths (<100 m)

Muted bottom 
topography

Large latitudinal
(~0 to 20oN) and
climatic ranges
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Paleoceanographic profiles – connections to global ocean
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Nitrogen isotopic evidence 
for lateral advection of
O2-deficient watermasses
from the Eastern Tropical
Panthalassic Ocean to the LPMS
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TRADE  WINDS
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Modern: oxygen-deficient intermediate waters
in the modern eastern tropical Pacific Ocean
rise to <100 m at latitudes of 5-12ºS and 5-20ºN

Advection into the Gulf of California
contributes to benthic anoxia in that sea

Algeo et al. (2008)

Trade winds enhance productivity
through upwelling of nutrient-rich
intermediate waters

Intermediate waters are oxygen-deficient
owing to “cul-de-sac” effect, only
weakly connected to subtropical gyres
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Nd isotopes as a tracer in the LPMS

Uniform εNd across the LPMS, indicating good watermass exchange



Smectite
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Smectite from S = stronger chemical weathering; illite from N = stronger physical weathering
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Inertinite

Vitrinite

Vitrinite from LPMS interior coal swamps, possibly transported NW by CCW gyre
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Algeo & Heckel (2008)

Inferred circulation patterns in the LPMS



Conclusions:

(1) Internal circulation patterns can be reconstructed in ancient epeiric seas using
a variety of proxies

(2) Such reconstructions can be useful in understanding controls on primary
productivity, redox conditions, and other paleoceanographic variables

(3) Such reconstructions can provide boundary conditions for paleoceanographic
modeling studies, the results of which can provide information about
controls on paleocirculation.
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The North American Late Devonian Seaway: a series of restricted cratonic-interior basins

Eq Algeo et al. (2007)



Analysis of Mo-TOC covariation  paleohydrographic conditions

Of 48 black shale formation-studies,
42 exhibited statistically significant 
positive Mo-TOC covariation:

• m ranged from 2 (low) to 65 (high)

• a majority yielded 12 < m < 25

• modern range: 4.5 (Black Sea) 
to 45 (Saanich Inlet)

TOC

Mo
m

Appalachian
Basin

Late Devonian Ohio Shale, Ohio

Algeo et al. (2007)



r2 = 0.96
p(α) ~0.01

r2 = 0.90
p(α) ~0.01

[Mo]sed ≡ [TOC]sed • [Mo]aq [Mo/TOC]sed ≡  [Mo]aq

[Mo]sed is determined by the concentration of both TOC in the sediment and
Mo in the watermass:

Significance:  m shows a strong relationship to both deepwater aqueous Mo 
concentration and deepwater renewal age; hence, it has predictive value for 
these parameters in paleomarine systems 
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Wells et al. (2007)





upwelling

The Late Pennsylvanian Midcontinent Sea had a 
deepwater connection to the Panthalassic Ocean 
through the Permian Basin Seaway  hence,
probably unrestricted deepwater circulation

Major differences in bathymetry, circulation & hydrographic conditions

The Late Devonian Seaway consisted of a
series of deep basins separated by shallower
sills  hence, restricted deepwater circulation



Late Devonian Seaway:
Divergent trace-metal concentration patterns
 evolution of watermass chemistry 
indicative of restricted deepwater renewal

Late Pennsylvanian Midcontinent Sea:
Strong trace-metal covariation 
constant watermass chemistry indicative
unrestricted deepwater renewal
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Panchuk et al. (2006)

“Aquafacies” – Chemically distinct watermasses

δ13Corg





Panchuk et al. (2005)

Panchuk et al. (2005)Boundary conditions

Model results

Paleogeography

Paleoceanographic modeling of Mohawkian Sea
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BALTIC  SEA GULF  OF  CARPENTARIA
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Highstand / lowstand cycles  changes in epeiric sea circulation

Fanton and Holmden (2007)
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Highstand / lowstand cycles  changes in epeiric sea circulation




