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Abstract 
 
Organic-rich shales (ORS) are the common source rock for most clastic reservoirs. The processes that are involved in how these shales generate 
extractable hydrocarbons from kerogen are fairly well understood. The maturity level of kerogens in organic-rich shales is presently determined by 
geochemical analysis of core samples. The maturity of shales at insitu conditions may be inferred from relationships between shale pressures, and 
downhole measurements from resistivity and sonic logs. The ability to determine maturity by the use of indirect measurements such as seismic 
is still the subject of research. 
 
The study focus area is the Bakken Formation in the Williston Basin, North America whose organic-rich shales are proven hydrocarbon source 
rocks. Further study in the remote detection of maturity would be help in reducing exploration and development costs. 
 
This study focuses on a method of predicting maturity of organic-rich shales by evaluation of their impedance micro-structure. Scanning acoustic 
microscopy is used to map the impedance of shale components. The impedance of these components is related to their elastic properties, and these 
components vary with maturity in the shales. Previous studies have been successful in relating shale velocities to porosity, and in detecting 
textural changes with maturity. In this study, direct qualitative relationships are shown between the impedance of shale samples, shale rock 
properties and maturity indicators, TOC and Transformation Ratio. 
 
This study adds to current understanding of the maturity-based variations by using analysis from scanning acoustic microscopy, integrating 
measurements from geochemical analysis, and observations from downhole sonic measurements to develop relationships for relating impedance 
information from seismic data to organic shale maturity. 
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• High silica + carbonate content results in high impedance shales.
No simple relationship between velocity, kerogen content, and maturity.

• Horizontal lamination of clay and organic matter causes
anisotropy. This reduces with depth as shale ‘hardens’, and
hydrocarbons are expelled.

• The combined elastic modulus of kerogen + clay increases with
increasing maturity. Transformation ratio can be calculated from the
Young’s modulus as: TR = 0.0083*Young’s Modulus - 0.0793

• Increasing impedance with maturity as hydrocarbons expelled,
porosity reduced, and clay compacts. It may be possible to use
impedance as a proxy for maturity.

CONCLUSIONS
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PRESENTATION OUTLINE



STUDY OBJECTIVES

• Determine the mineralogical control on the elastic properties of
organic-rich shale.

• Determine the relationship between kerogen maturity and elastic

properties of organic-rich shales in the Bakken Formation.

GOAL

• To establish relationships that would be useful in predicting organic-

rich shale maturity from elastic properties.



 

Notes by Presenter: Point out after the first bullet that shale play exploration and developments are typically technologically challenging, since their 
tight permeability requires higher well density than conventional clastic reservoir plays and expensive multi-stage fracture jobs are frequently 
required prior to production.The economics for development are thus challenged, so it is necessary to have a really good idea of individual field 
reserves. The current methods are restricted to near wellbore and so aerially limited. 



BACKGROUND
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STUDY AREA: LOCATION AND GEOLOGIC OVERVIEW
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CONVENTIONAL MATURITY DETECTION

• Geochemical Composition (Pyrolysis)

• S1, S2, S3 and the maximum temperature at S2 (TMax)

• Total Organic Carbon (TOC) and Hydrogen Index (HI)

• Calculated – Transformation Ratio (TR) and S1/TOC

• TOC from Wireline Logs (Resistivity, Sonic, Density Logs)

• Schmoker (density)

• Passey (Δlog R)

• Wireline Log vs Depth Relationships 
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Notes by Presenter: Conventional maturity detection methods limited in application to regional and sub-regional delineation of maturity. In the 
figure TR from core pyrolysis at several well locations was contoured to show increasing maturity towards the basin center. Point out that map is 
only as good as well density and location of pyrolyzed core. Not really sufficient for individual field maturity estimation. Explain that the enclosed 
polygon defined by low S2 value was also interpreted as being in high paleogeothermal gradient area of the Bakken.  



RESULTS
• LOG CROSS-PLOTS

• QEMSCAN MINERALOGY IMAGING AND ANALYSIS

• NANO-INDENTATION



 

Notes by Presenter: TOC was calculated from log density using Schmoker’s empirical relationship derived for the Bakken shales. Plot shows that 
a predictable relationship exists between rock elasticity and organic matter content. 



RESULTS
• LOG CROSS-PLOTS

• QEMSCAN MINERALOGY IMAGING AND ANALYSIS

• NANO-INDENTATION



 

Notes by Presenter: Shales have high silica content, but some samples dominated by clay. Dolomite also present in some samples. No particular 
trend as far as increase or decrease of mineral types with depth. It is important to note the presence of clays as their content and manner of occurrence 
in the rock matrix affect the elastic  properties of the rock. 



 

Notes by Presenter: Comparison of the Upper and Lower shale mineral compositions show differences: Higher clay, but lower quartz content in 
the Upper shale than the Lower shale samples.This mineralogic composition would cause the Upper shale to be higher density than the Lower shale, 
due to the higher density of silica as compared to clays. In view of this, it would be expected that the Upper shales would have higher velocity than 
the Lower shale. This is not the case as seen table A (bottom left). from the same core data to check the effect of sampling bias, log data from 
database of  59 wells was used to get averages for TOC (Schmoker), NPHI, density and velocity. These showed similar differences between the 
Upper and Lower shales as far as velocity is concerned.TOC and Porosity for the Lower shales in the core sample are higher than that of the Upper 
shales. This shows that the organic matter and porosity compensate for the higher silica in Lower shales, enough to make the Upper shales higher 
velocity. The implication of this is that despite differences in mineralogic content in the shales, they may not be distinguishable using velocity alone 
due to the compensation caused by porosity and organic matter content. 



QEMSCAN IMAGES: MINERALOGY AND PORE SPACE/CLAY 

• Intermediate maturity sample (HI = 217) showing pore space occurrence.

• Same sample imaged in for mineralogy (left), and porosity (right).



 

Notes by Presenter: Two samples at about 7200ft showing clay/organic matter occurring as thin lenses, in partings, and in dissolution spaces 
around minerals. Left image shows increased presence of these softer components in a preferred horizontal orientation. This sample has higher clay 
content and lower silica content than image on right. Comparison of anisotropy shows that sample on left is higher anisotropy and heterogeneity than 
that on right. 



 

Notes by Presenter: At greater depth, differences are more subtle, but clay content still contributes to more parting with preferrential orientation. 



RESULTS
• LOG CROSS-PLOTS

• QEMSCAN MINERALOGY IMAGING AND ANALYSIS

• NANO-INDENTATION



 

Notes by Presenter: Typical plot from Nano-indentation. Averaging done between 300-400nm where indenter most stable. 



 

Notes by Presenter: Plot of Young’s modulus against all maturity indices (TOC, TR, HI and Tmax) show poor correlation when the average for 
entire sample is used. 



 

Notes by Presenter: Plot of Young’s modulus against all maturity indices (TOC, TR, HI and Tmax) show better correlation when the average for 
only softer components is used. 



• High silica + carbonate content results in high impedance shales.
No simple relationship between velocity, kerogen content, and maturity.

• Horizontal lamination of clay and organic matter causes
anisotropy. This reduces with depth as shale ‘hardens’, and
hydrocarbons are expelled.

• The combined elastic modulus of kerogen + clay increases with
increasing maturity. Transformation ratio can be calculated from the
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