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Abstract 
 
We use scaled experimental (analog) models to investigate how the properties of pre-existing zones of weakness influence 
deformation patterns during extension. In the models, a homogeneous layer of wet clay (simulating brittle rock) undergoes two 
phases of extension whose directions differ by 45°. To vary the properties of the first-phase fault fabric, we vary the magnitude of the 
first-phase extension. Specifically, as the extension magnitude increases, the number, average length, and average displacement of the 
first-phase normal faults increase. Deformation during the second phase of extension depends on the properties of the first-phase fault 
fabric (and, thus, on the magnitude of the first-phase extension). For a poorly developed pre-existing fault fabric, new normal faults 
(which strike perpendicular to the second-phase extension direction) accommodate most of the extension during the second phase. 
For a well-developed pre-existing fault fabric, many of the first-phase normal faults are reactivated as oblique-slip faults during the 
second phase of extension. New normal faults also form. These second-phase normal faults are shorter and more likely to strike 
obliquely to the second-phase extension direction. They are also less likely to cut pre-existing faults than the second-phase normal 
faults that form in models with a poorly developed fabric. In all models, the pre-existing faults act as nucleation sites for the second-
phase normal faults. In models with a well-developed fabric, however, the pre-existing faults also act as obstacles to the lateral and 
vertical propagation of the second-phase normal faults. We classify the faults patterns as first-phase dominant, second-phase 
dominant, or neither phase dominant, depending on which fault population (if any) controls the final deformation pattern. The relative 
magnitude of extension during the two phases of deformation determines the dominance of a particular fault population. Intersecting 
fault patterns result when first-phase faults are dominant, parallel fault patterns result when second-phase faults are dominant, and 
zigzag fault patterns result when neither the first-phase nor the second-phase faults are dominant. These fault patterns are common in 
many extensional basins (e.g., the Jeanne d’Arc Basin of eastern Canada, the Suez Rift of Egypt, the Pattani Basin of Thailand), and 
likely reflect the influence of a pre-existing fabric. 
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Do pre-existing faults help or hinder new fault development?

Terra Nova oilfield, Grand Banks

Map of the Terra Nova region of the Jeanne d‘Arc rift 
basin, offshore Newfoundland, showing faults offsetting 
the B marker (Early Cretaceous). In this region, N-striking 
normal faults predate E-striking normal faults.  Map 
modified from McIntyre et al. (2004).

The Jeanne d‛Arc basin 
likely underwent E-W 
extension in the late 
Jurassic and NE-SW 
extension in the Early 
Cretaceous (Sinclair et 
al., 1995; McIntyre et 
al., 2004).

The rift basins of Thailand 
likely underwent multiple 
phases of deformation during 
the Cenozoic (Kornsawam and 
Morley, 2002; Morley et al., 
2004)

Map of the Pattani basin 
showing younger (Lower 
Miocene to recent), NNE- to 
NE-striking faults overlying 
older (Eocene-Oligocene), 
NNE- to N-striking faults. 
Map modified from Morley et 
al. (2004)
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Complex fault interactions and limitations imposed by seismic resolution 
often make natural fault patterns difficult to interpret. 

- Modeling material is clay (density=1.55-1.60 g cm-3, cohesive strength is ~50 Pa)
- 45º between extensional phases for all models
- Rubber sheet at model base simulates distributed extension
- Silicone polymer overlies rubber sheet, localizing deformation and decoupling the clay layer 
from the rubber sheet

- Experimental modeling simulates deformation in a controlled environment
- Series of models varies displacement during first extensional phase 
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Research Approach: Experimental Modeling

Research Questions

A

A’

Rubber sheet
Silicone polymerWet clay 3.5 cm 4 cm

8 cmFixed rigid 
sheet

Mobile rigid 
sheet

A A’

Many extensional provinces have undergone multiple phases of 
deformation, creating complex fault patterns 1) How does the fault pattern that forms during an early episode of 

extension affect the fault patterns that form during subsequent 
episodes of extension? 

2) Does changing the properties (e.g., the number, length, 
displacement, and spacing) of faults within a pre-existing fault 
fabric affect the fault patterns that form during subsequent 
episodes of extension?

3) Is the temporal evolution of new faults affected by different 
degrees of initial fabric development? 
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Second-Phase Deformation
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Pre-existing fault
New fault

New fault cross-cuts 
pre-existing fault

New fault terminates 
against pre-existing fault

- Both total number of fault interactions and number of cross-cutting 
interactions increase with increasing magnitude of first-phase extension

- Percentage of the total fault interactions that are cross-cutting 
decreases with increasing magnitude of first-phase extension 

Characteristics of fault populations after the first phase of extension 
depend on the magnitude of displacement of the mobile sheet

sum of all segments

sum of segments orthogonal (±10°) to E1

sum of segments orthogonal (±10°) to E2
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Fault Interactions

- Many first-phase faults reactivate 
with both normal and strike-slip 
components

- New faults commonly initiate at 
pre-existing faults and propagate away 
from them

- Displacement on new faults is 
greatest next to pre-existing faults

Decreasing the magnitude of first-phase displacement:

For Model A:
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- New faults are present on the 
model surface at lower displacements 
in Models A-D than in Model E (with 
no first-phase displacement)

- New faults are generally shorter in 
Models A and B than in Models D and 
E (with little to no first-phase 
displacement)

- Sum of fault segments orthogonal to 
the second-phase extension direction is 
lowest for Models A and B 

- Sum of fault segments orthogonal to 
the second-phase extension increases 
with decreasing initial fabric development 
(first-phase displacement)

Fault-Segment Lengths

Corrugations (grooves) on the fault 
surface parallel the two slip 
directions on reactivated faults
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* Measured orthogonal to the trend of the deformation zone
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Summary and Implications

Implications for Reservoir Connectivity

If an initial fault fabric 
is poorly developed, a 
reservoir may be highly 
connected with only one 
oil-water contact.

If an initial fabric is well 
developed, a reservoir may 
be compartmentalized with 
many oil-water contacts.

- Pre-existing faults serve as nucleation sites for new faults
- If pre-existing faults are sufficiently developed, they serve as 
lateral obstacles to fault propagation and growth

- The dominance of first-phase or second-phase faults is controlled 
by the strain magnitude during both the first and second phases of 
extension

Conclusions

Pre-existing faults
New faults

Second phase faults cut 
and offset first phase 
faults

Second phase faults 
terminate against first 
phase faults

5 km

N

E2

E1

Interpreting Natural Fault Patterns: Terra Nova Oilfield
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- As second-phase extension increases, new 
segments link with pre-existing faults 
creating composite faults

- New composite faults strike perpendicular 
to the bisector of the angle between the 
first-phase and second-phase extension 
directions

Formation of zig-zag faults

2 cm

- Both types of fault interaction observed in the models are present at Terra Nova
- Younger, E-striking normal faults likely initiated at and propagated outward from older, 

N-striking faults
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Evolution of fault patterns during 
second-phase extension falls into 
three categories:

   First-phase dominant: 
reactivated first-phase faults are 
longer and have more displacement 
than second-phase faults; 
intersecting fault pattern

   Second-phase dominant:
new second-phase faults are longer 
and have more displacement than 
first-phase faults; parallel fault 
pattern

   Neither phase dominant: 
first-phase and second- phase 
faults have similar lengths, 
displacements, and accommodate 
similar amounts of deformation; 
zig-zag fault pattern

Categorizing Second-Phase Geometries
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