Sedimentary Structure Distribution and Modification on the Continental Shelf: Relative Roles of River
Input, Sediment Transport and Oceanographic Setting*

Steven E. Kuehl®, Lila E. Rose! and Tara A. Kniskern*

Search and Discovery Article #40630 (2010)
Posted November 5, 2010

* Adapted from an oral presentation at AAPG Annual Convention and Exhibition, New Orleans, Louisiana, USA, April 11-14, 2010

'VIMS - William and Mary, Gloucester Pt., VA. (kuehl@vims.edu)

Abstract

Studies of sedimentary structures in modern shallow marine environments influenced by rivers have been conducted in active and
passive margin settings from numerous areas worldwide (e.g., shelves adjacent to the Amazon, Mississippi, Eel, Waipaoa Rivers).
Despite the large differences in scale between such systems, the offshore progression of sedimentary structures has many similarities.
Factors indicated in the control on fine-scale sedimentary structures and their post-depositional modification include episodicity of
river inputs, sediment transport mode, water depth and wave base, biological activity and the sediment accumulation rate. Many
previous studies have suggested sediment accumulation rate as a dominant control on the preservation of primary physical structures
on the continental shelf. However, results from recent studies suggest that, within the normal range of accumulation rates observed in
shelf environments, other factors such as water depth, flood input history, and proximity to sediment source are the dominant controls
on the occurrence and preservation of physically emplaced sedimentary structures. The timing and history of river flood and storm
events is one factor in determining the distribution of event layers on the shelf, and their ultimate preservation. For example,
concomitant river flooding and storm conditions favor the generation of wave- and current-supported gravity flows capable of
broadcasting flood sediments across the shelf. Out of phase flooding would favor rapid deposition in nearshore and shallow shelf
environments. The resultant flood layers have a higher preservation potential if they are buried quickly by deposition during
subsequent large floods. Surface gravity waves cause physical reworking of the seabed in water depths shallower than wave base,
obliterating original structures and winnowing the seabed of fines, but creating layers and laminations which may be similar (albeit
coarser) than originally emplaced flood layers. In deeper waters, reworking of primary sedimentary structures arises from biological
activity in the near-surface seabed, and the preservation of physically emplaced structures depends on the relative importance of
biological mixing depth and intensity, and the sediment burial rate and history. These studies indicate that factors other than long-term
accumulation rates primarily influence the formation and preservation of fine scale sedimentary structures on the continental shelf.
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Sediment Accumulation Rate as the Master Variable?
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Notes by Presenter (for previous slide):

The catchment of the Waipaoa River originates in the axial ranges of eastern North Island and sediments are emptied into Poverty Bay vial the
coastal plains of Gisborne. Waipaoa can be classified as a small mountainous river. These rivers often have large sediment yields and are incredibly
important components in delivering sediment to the ocean. Milliman and Meade (1983) estimated that 70% of the sediment reaching the ocean is

derived from rivers draining southern Asia and islands in the Pacific and Indian Ocean of which most of these rivers are classified as small

mountainous rivers.
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Distribution of Sedimentary Structures on Waipaoa Shelf
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High Accumulation Rate # Preserved Structure!
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Episodic Inputs (Sediment Gravity Flows?) Preserved

-38.65+

-38.75+

-38.854 \

-38.95-

state

[0 non steady- Z
// [ ch\?\},euniform -
-39.15 %\m\\ )

1 1 1 1
177.90 178.00 178.10 178.20 178.30 178.40

zz




178°20'0"E 178°30'0"E 178°40'0"E 178°50'0"E

37°40'0"' S PRl N =1-37°40'0"'S

37°50"0" S~ y =37°50'0"'S

* Ruatoria Re-entrant

38°0"0" S C —38°0'0"S

Houtuni "
Point

- {+] "m"s
38°100"5 38100

I T T T
178°20'0"E 178°30"0"E 178°40'0"E 178°50'0"E







Depth (cm)

OIIlecess 210pp Aqiti\-'ity (dpm/g) 10

Evidence of Multiple Sediment
Transport Mechanisms: Wave/
Current Supported Gravity Flows

178°300'E 178°400'E 178°500'E

-26 =25 =24 =23 i . o EN/ \‘-:‘{‘\ \ Kilometers
g S

A del 3C (PDB) ) 25°%

Non-steady state
excess “1°Pb
activity profiles

- 4

37T500'S
37°500'S

178°300'E 178°400'E 178°500'E



178 300"E 178 400 178 500"E

ed/ low accumulation
nmulation

Physical-bioturbated accumulation
Bioturbated accumulation

178 300"E 178 500"E




S0.0F LE S.0.06 LE S0 8E

178 500°E
178 500°E

19ph Accumulation

2

Excess

178 400"E
178 400"E

®
=
=
o
o
z
=

Su0.0F LE S.0.06 LE

cm

ent layer thickness (cm)
45 - 81

178 4070

S.00F LE




Conclusions

Episodic rapid sediment inputs key to signal
preservation

Sediment gravity flows sensitive to subtle
bathymetric gradients in slope

Tectonic setting (i.e., accommodation) is dominant
steering mechanism for sediment gravity flows

Accumulation rate alone not sufficient to predict
primary structure preservation
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