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Abstract 
 

Vertical changes in fluvial deposit net/gross over 10’s to 100’s of meters and associated changes in depositional style and channel belt 
connectivity are widely observed within thick alluvial successions. It is popular to interpret these variations in terms of allogenic 
accommodation variations defined under a fluvial equilibrium profile of fixed geometry that is coupled to shoreline position. These 
interpretations generally infer that fluvial gradients steepen during sea-level fall, leading to declining accumulation rates (and eventual 
channel incision), floodplain narrowing, preferential preservation of channel relative to overbank deposits, and internally sandy 
channel belts. Sea-level rise is inferred to decrease fluvial gradients and widen floodplains as sediment aggradation accelerates and 
river incisions fill, leading to greater preservation of floodplain deposits and more internally heterolithic channel belts. Despite their 
popularity, we suggest current sequence stratigraphic models for fluvial systems based on these ideas are too simplistic and in many 
cases the underlying assumptions may be wrong. Fluvial stratigraphic interpretations commonly reverse cause and effect on alluvial 
architecture variables, wrongly predict that most large-scale fluvial successions fine upward, and over-emphasize accommodation 
controls and the ability of coastlines to buttress fluvial aggradation during relative sea-level rise. As an alternative, we interpret fluvial 
successions as regionally and locally prograding sediment wedges that initially expand as rates of downstream slope decline gradually 
decay over time and then back-step as sediment aggradation rates locally fall below subsidence rates (c.f., Autoretreat of Muto & 
Steel, 1997). Progradation can be initiated by allogenic changes or by autocyclic avulsions of sediment supply to areas that have 
previously undergone gradual subsidence. Sea level is inferred to have little influence on alluvial slopes and rates of sediment 
progradation, except perhaps in some areas directly adjacent to the coast. The idea that fluvial deposits are composed of prograding 
and retrograding units (at multiple scales) is used to interpret variations within several thick alluvial successions that gradually coarsen 
upward as channel belts progressively become larger and more obviously clustered. These successions tend to be capped by a 
relatively thin, erosionally-based sand-dominated interval, before fairly abruptly fining upsection. 
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Proportion of channel belt deposits within a succession is inversely related to 
aggradation rate. If all other variables are assumed constant!

Bridge and Mackey, 1995 Wright & Marriott, 1993

Fluvial Sequence Stratigraphy Concepts

Popular Concept 1

The LAB alluvial architecture models define the variables that account for 
variations in deposit net/gross, but they do not explicitly define relationships 
between these variables, nor allocyclic process that control changes in these 
variables.
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Fluvial accommodation can be defined by reference to a graded profile, fixed in 
shape, that is coupled the coast.

Popular Concept 2 Fluvial Sequence Stratigraphy Concepts
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Unlike dams, shorelines are not locked in position along a fluvial profile
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Upward fining major fluvial  depositional cycles

Fluvial Sequence Stratigraphy ConceptsPopular Concept 3

“It is now widely understood 
that fluvial aggradation and 
coastal onlap occur on the 
rising limb of a relative sea-
level curve”

Canuneanu 2006

From Aitken and Howell (1996) Introduction 
to the volume High Resolution Sequence 
Stratigraphy (Geological Society, London, Sp 
104)
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In Posamentier & Vail (1988) most 
fluvial deposition was predicted to occur 
in the early highstand when shorelines 
moved basinward .
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Accumulation
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Sediment Partitioning

Distance (x)

E
le

va
tio

n 
(h

)

Mud San
d

Mud San
d

Mud San
d

All else constant (no subsidence):
• Grain size and net/gross of deposits decrease 

downstream due to preferential deposition of 
coarser grains.

• Down-basin lithic partitioning is more pronounced 
across regions with greater rates of slope decline.
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Channel Belt Patterns & 
Avulsion Behavior

Distance (x)

Distance (x)

El
ev

at
io

n 
(h

)
El

ev
at

io
n 

(h
)

Steep Rate of Change of Slope
• Frequent avulsions.
• Multiple coeval active channel belts 

(strongly distributive).
Rapid down-dip decline in net/gross.

Gradual Rate of Change of Slope
• Rare avulsions.
• Single active channel belt

(weakly distributive).
• Slow down dip decline 

in net/gross.

Kosi River, India

Chenab River, India

Himalaya

Himalaya
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Channel Pattern
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Channel pattern depends on slope 
(relative to discharge) and only indirectly 
on grain size or net/gross of deposits
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Subsidence
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Subsidence

Auto-retreat detachment of water 
from sediment discharge.

Following Muto and Steel, 1992

Accommodation

Deposition expands until 
sediment supply can not keep 
pace with subsidence
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Tectonic Fluvial Depositional Cycle
Sediment
starved

Landward shift due to asymmetrical subsidence

Basinward shift due to increasing sediment supply
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Erosion?



Sea Level: Shoreline Regression

If all else constant (not subsidence)
Fluvial expands with slope decay
Shorelines regress due to fluvial sediment

supply to the shoreline
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Eustatic Sea Level Rise
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Relative sea level rise due
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Auto-retreat leaves a succession of “strainded”
coastal deposits (e.g., barrier islands) becasue
the termination of fluvial sediment supply defines
the shoreline position.

The farther the coast is “forced” onto the
fluvial wedge by eustatic sea level rise, the
faster successive shorelines will prograde.

Subsidence



Eustatic Sea level Change
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Conclusions
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Shoreline

Fluvial system

• Applying shoreline sequence 
stratigraphic concepts to fluvial 
systems puts the wrong 
emphasis on controlling 
processes.

• Large-scale fluvial successions are better visualized as driven 
by changes in sediment supply relative to subsidence  
(probably related to tectonics or climate change) rather than 
by sea level driven changes in accommodation.

• Concept of accommodation 
defined by a fixed fluvial profile 
linked to the coast is poorly 
developed and probably wrong 
for most large fluvial systems.
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