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Abstract 
 
A new staged differential effective medium model for acoustic velocities, which was recently published, allows the mineralogy and texture of rocks to 
be modeled. The model is based on interpolating between series and parallel additions of inclusions with an effective medium approximation for the host. 
It was shown to be consistent with critical porosity models and Gassman’s equation. The model represents an extension of these ideas in that it allows 
variations in mineralogy and texture to be included. The development of this model is briefly reviewed here. What remains to be demonstrated is how 
the parameters in the model are derived. Several examples are shown for specific lithologies. The model is first applied to a suite of artificial sands. Sand 
packs were made so that individual parameters could be changed and their influence on acoustic properties measured. Key parameters are derived for 
variations in packing, sorting, grain size and shape, and framework mineralogy. Suites of samples were measured for increasing ductile grain and 
feldspar content, for sands having mean grain size of 150 and 300 microns. As feldspar content increases from 3‐12 weight percent, the velocity of the 
sand pack increases with very minimal changes in total porosity. As feldspar content increases above 12%, continuing to add feldspar causes the velocity 
to decrease. Thin-sections cut from 1” diameter plugs of the artificial sands were analyzed using Shell’s proprietary image analysis tool. The pattern of 
changes in measured acoustic properties was tied to changes in contact length and the mineralogy of the contact pairs. Adding small volumes of feldspar 
causes the overall contact index of the sands to increase because of the lathlike shape of the feldspar grains, although quartz:quartz contacts dominate the 
elastic properties. Above about 12 weight % feldspar, feldspar:feldspar, and feldspar:quartz contacts begin to dominate the grain pack and exert the 
primary influence on the acoustic properties. The effects of changing other properties of the sand pack (e.g., sorting) and the influence of more complex 
mineralogic mixtures on acoustic properties are also discussed. Finally application will be made to real samples both for clastics and carbonates. The 
dominant mechanisms for carbonates are the texture of the intergranular porosity and the inclusion of vuggy porosity. The field examples of the clastics 
follow the mechanisms discussed above for sand packs.  

Copyright © AAPG. Serial rights given by author.  For all other rights contact author directly.
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           Iso-Stress and Iso-
Strain Models 

A Place to Start
• Voight Average

• Iso-strain Average: 
Gives the the ratio of 
the average stress to 

average strain when all 
the components are 
assumed to have the 

same strain. The stiffer 
spring dominates



   Iso-Stress and Iso-
Strain Models 

A Place to Start

• Reuss Average
• Iso-stress Average: Gives the ratio of 

the average stress to average strain 
when all the components are 
assumed to have the same stress. 
The weaker spring dominates



 Iso-stress and Iso-
strain Models 

A Place to Start

f1 is the volume fraction of material one, M1 and M2 are the individual moduli.
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For 3D Models These are Bounds
on the Moduli

• Voight average represents an upper bound

• Reuss average represents a lower bound

• Even narrower bounds may be set: For an isotropic material the Hashin-
Shtrikman bounds are

K1 and K2 are the bulk moduli of material one and two;  and 2 are the shear moduli.
Upper and lower bounds are found by interchanging which material is termed 1 and 2
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The Bounds May be Broad for Mixtures of Materials      
with Widely Different Properties

Volume Fraction of Water
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How About a Model That Allows a 
Continuous Interpolation?

L=0 is the Iso-Stress Average       L=1 is the Iso-Strain Average

Where L is a parameter which continuously varies between 
zero and one: Between the iso-strain and the iso-stress case.  

Use the following mixing law:

K KV L KR 1 L( )



Develop a Differential Effective 
Medium Model From This Mixing Law

Inclusion

Inclusion

Form a dilute mixture assuming the inclusions only see the average properties 
of the host and neglecting interaction terms.

Host

Inclusion



                     Form a Differential Effective 
Medium Model From This Mixing 

Law
• Formulate a difference equation for the change in properties due to the 

addition of small volumes of inclusions.  Use this “effective medium”
as the host. (M is the modulus of the mixture, Mh the modulus of the 
host, Mi and fi are the modulus and volume fraction of the inclusion 
respectively)

• Use this equation to formulate a differential equation. (is the 
porosity) dM
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







LM i 1 L( ) M 

d



M Mh

Mh
fi

Mi Mh

Mh









L 1 L( )
Mh Mi

Mi






















Compare to the Hanai-
Bruggeman Equation

• Hanai-Bruggeman

• DEM modulus model

Where  is the final porosity, o is the initial porosity, Mi is the Modulus of 
the inclusion, Mh is the modulus of the host, M is the modulus of the mixture. 

In the limiting cases, L=0 or L=1, they  both simplify to parallel or series model 
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                   Iso-Stress and Iso-Strain Models 
are Preserved for the 

Combination of the Host and 
Impurity• For L=0 (iso-stress)

• For L=1 (iso-strain)
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DEM Modulus Model
• Preserves the Voight and Reuss averages at the limits L=0 

and L=1.

• Allows continuous interpolation between iso-strain and iso-
stress averages.

• Allow multiple lithology changes at separate integration 
steps. Ordering of the integration is dependent on length 
scales present in the sample (implicit in the derivation).



                                 The Inclusions Are Imbedded in a Host 
With Average Properties of the Mixture

Size is implicit in the order: longer length scales are added after 
smaller. This is implied by the effective medium approximation

Host

Inclusion 2

Inclusion 2

Inclusion 1

Inclusion 1

Inclusion 1



DEM Modulus Model
• Preserves the Voight and Reuss averages at the 

limits L=0 and L=1.

• Allows continuous interpolation between iso-
strain and iso-stress averages.

• Allows multiple lithology changes at separate 
integration steps. Ordering of the integration is 
dependent on length scales present in the 
sample (implicit in the derivation).

• Naturally includes critical concentration models.

• Fluid substitution is consistent with Gassmann.



Application of the Model to 
Predict Velocities
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Measured Shear Modulus for Rock Catalogue Carbonates
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The SDEM model for the modulus is:

Solving for the porosity:

Solving for the L:

1

h h

i h i

h

MM
M M M ML




  








0 10 20 30 40 50

Fit for the Bulk Modulus for Rock Catalogue 
Limestones

Total Porosity

B
ul

k 
M

od
ul

us
 (P

a)

Lint=.10

Lint=.93

0

2 1010

4 1010

6 1010



Example Fit for the Shear Modulus for Rock Catalogue Limestones
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Comparison of Fits for L values for the 
Carbonate Data Sets

Bulk  
Modulus

Dolomites

Shear  
Modulus 

Dolomites

Bulk 
Modulus 

Limestones

Shear 
Modulus 

Limestones

L

.16 .21 .10 .08 Intergranular / 
Intercrystalline

.95 .84 .93 .75 Vugs



Check the Consistency with 
Resistivity Data
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Solving for the intergranular porosity gives:

    10 10

int

log log

int 10
total vug total
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Effective medium models for the resistivity give:

Where       is the connected intergranular porosity,         is 
the total porosity, F is the formation factor and      and
are exponents similar to the exponent in Archie’s equation

int                                    total

                                                          int v u g
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Bulk Modulus for Rock Catalogue Limestones
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Shear Modulus for Rock Catalogue Limestones
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Check the Consistency with 
Resistivity Data
• The electrical data does not improve the fits; 

the petrology data works as well!

• Some other explanation is required for the 
variation in the data



Example Fits for Shear Modulus For 
Unconsolidated Sands
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Things To Do

• Develop techniques to model connected pore 
systems

– Grain contacts

– Fractures

– Multiple mineralogies

• Apply to shales

• Identify controls on anisotropy






