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Abstract

Lower Miocene turbidite reservoirs drilled in the Western Atwater Fold Belt, Gulf of Mexico, exhibit significant variations in gross
reservoir thickness, character and quality within individual fields on salt-cored structural highs. Three-dimensional structural
restorations based on seismic and well data indicate the presence of significant paleotopography during deposition of these turbidite
reservoirs and the observed reservoir variations appear to be systematically related to position on paleotopography. The primary driver
of this paleotopography is autochthonous salt diapirism. Understanding the interaction between substrate topography and turbidite
sedimentation is critical in attempting to quantitatively predict reservoir variation within these fields.

A new technique used at BHP Billiton Petroleum to help predict these turbidite reservoir variations is to first perform structural
restoration to infer paleotopography and then simulate deposition on that paleotopography. The depositional algorithm is based on the
work by Waltham (2004) for two-dimensional, depth-averaged gravity currents. One specific geographic area in particular, with three
prominent Lower Miocene turbidite reservoirs deposited around a paleostructure estimated to have relief on the order of a few
hundred meters, has been modeled. Estimates of the absolute magnitudes of paleotopographic relief have been tested by the degree of
similarity of drilled well penetrations and simulation predictions. Reasonable matches to well penetrations were achieved through
step-wise modification of the number and character of turbidite flows making up each reservoir.
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The critical factors that produce variations in the character of turbidite flow deposits around obstructing topography are relative flow
height with respect to paleorelief and flow trajectory relative to paleotopography. Given the uncertainty in multiple parameters (e.g.
number of flows, flow width, flow height, flow volume, grain size distribution and parameter variation from flow to flow) it is
important that multiple screening scenarios be simulated and multiple well penetrations be matched successfully before having
reasonable confidence in additional inter-well predictions. The rapid simulation capability available with depth-averaged simulations
enables this testing of multiple scenarios in a reasonable time frame.
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Lower Miocene turbidite reservoirs drilled in the Western Atwater Fold Belt, Gulf of Mexico, exhibit significant
variations in gross reservoir thickness, character, and quality within individual fields on salt-cored structural highs.
Three-dimensional structural restorations hased on seismic and well data indicate the presence of significant
paleotopography during deposition of these turbidite reservoirs and the observed reservoir variations appear to be
systematically related to position on paleotopography. The primary driver of this paleotopography is
autochthonous salt diapirism. Understanding the interaction between substrate topography and turbidite
sedimentation is critical in attempting to quantitatively predict reservoir variation within these fields.
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Understanding the interaction between substrate topography and
turbidite sedimentation is critical in attempting to quantitatively predict
reservoir presence and variation both at the field scale (above) and
regionally (below).
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These turbidite reservoirs often exhibit significant variations in gross
reservoir thickness, character, and quality on these salt-cored
structural highs. The structural restorations indicate the presence of
significant paleotopography during deposition of these turbidite
reservoirs and the observed reservoir variations appear to be
systematically related to position on paleotopography.
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