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Abstract

Rivers are key agents of mass flux in rift basins. The evolution of these rivers, and thus the distribution of their deposits, is strongly
influenced by the development of normal fault systems. Rivers and their deposits can be used to understand the behavior and growth of fault
systems while, conversely, the growth of normal fault systems influence the spatial distribution of river sediments. The Corinth rift in
Greece provides a unique opportunity to study both the interaction of present day rivers with a rapidly opening rift and to trace the behavior
and influence of the same drainage system back through a rifting history of around 4 million years.

Three stages are recognized in this rift's development: (a) Early Rift: The influence of inherited landscape and an antecedent drainage system
on early rift structure and sediment dispersal (Pliocene Early Pleistocene). The standard evolutionary model for normal fault systems and related rift stratigraphy
assumes that, in the initial pre-rift state, a homogenous crust has a flat upper surface and that the landscape and drainage system derives
uniquely from the tectonic and climatic activity during rifting. But if, as occurs in the Corinth rift, rifting is superimposed on a complex pre-
existing landscape with a well established drainage network, how will the early fault network evolve and how will sediments be distributed
in early depocentres? (b) Mid Rift: Interaction of major normal faults with a well established antecedent drainage system during accelerated
extension. At around 2-1.8 Ma the dynamics of rifting changed and the drainage system became subordinate to faulting. In the west, fault
activity migrated northward and concentrated upon a single major fault (Ford et al., 2007) while in the east, northward migration of fault
activity was more progressive (Rohais et al., 2007). Giant Gilbert deltas were deposited in the main depo-centers and track the life and death
of controlling faults. (c) Recent Rift: Erosion power of antecedent rivers during accelerated uplift - at around 0.7 Ma fault activity migrated
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north again and became focused on major coastal faults that control the current Gulf. The northern Peloponnesos began to uplift at a rate
between 1 and 1.5 mm/a. In the west, rivers continued to flow northward, eroding into their own conglomeratic L-M Pleistocene deltas to
redeposit them in the Gulf. Further east, many north flowing rivers were forced to flow south into endorheic basins.
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The Corinth RiIft
Most rapidly opening rift in the world

Rifting started at around 4 Ma
Southern margin uplifted




PGeodynamic setting

Lies within a rapidly evolving, diffuse plate boundary linking
the Kefalonia fault (KF) with the North Anatolian fault (NAF).
Lies above the NW subducting African plate

Superimposed on the N-S trending Oligo-Miocene Hellenide
fold and thrust belt

42'—1:;‘—--—-——

41

Yellow areas are
actively extending
(N-S)

40 1/

39

38 N \
% & L,

ampta leplock- EY%(?% ? Eﬁ

R4
37 > |
O o e 15 % 5 e £ 0 _
36 | < % £ B.C. Burchfiel, MIT,
oo | ot | 2003 GSA Presidential
ok Sl -—Izo mm/yr address, 2008
s b S0 100 200 T _ |




Corinth Rift
T o I | o
22 030! 23
e T
_l—-ﬁ_%
~ —~
\\_ —— ——_—-\—_F_— \ ——
/’\:_’_\\
\ —'—F~.\_
GULF \\ /\
———— OF ~—— ~
—~\Rohais 2007 —T==
S CORINTH S~ Alkyonides
ul
r \ \Q\ /
' \\Megara TN
. basin
- 38 ; - Loutraki X -
T | Tone T T ___’___._'- _ ,___‘a__,_.. GUIf ' _,_/
(a) “ Europea;?‘Pqug - ﬁ'&jr_r
RS g AR
< F \Sreece;;; ! 'U'a? Anatolian Plate :’L\ SARONIC
Gulf of Sorinth L \ R '.Ci-ﬁl—
= g -.‘i., *\:7*’“-"" Turkey s - @ e GULF
....... N Plio-Quat N
A io-Quaternary Major faults
) deposits — 1
e Pre-rift basement —— Minor faults 25 km




i =

st

e

points on Corinth rifting

1. Three phase rift history recording increasing Rate
of Extension and Fault Migration

2. Major antecedent river system controlled sediment
supply throughout rifting in western rift

- controlling mass flux

- maintaining high sediment supply

3. Pre-existing relief influenced sediment routing
pathways especially during early rifting




Today s rivers in western Gulf
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ONSHORE SYN-RIFT STRATIGRAPHY
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Minimum total NS extension across whole rift is approx 11 km (Beta 1.2).
Assuming rifting began around 4 Ma, average extension rate =2.75 mm/a.

Present-day extension rate in the western gulf =16 mm/yr (Bernard et al. 2006)
and 11 mm/yr in the eastern gulf (Briole et al. 2000).

If extrapolated back through 4 Myr rifting history, total extension would be 44 to
64 km.

Extension rate must therefore have accelerated significantly during rifting.

When and why did this acceleration occur?
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(TN Present coarse conglomeratic Gilbert deltas
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Middle Group
- Coarse Conglomeratic Gilbert Deltas

|:| Derveni Fm

Unconformity
Lower Group

[:| Derveni Fm
- Katafugion Fm

|:| Fluvio-deltaic sandstones and siltstones
- Fluvial sandstones and conglomerates
- Coarse alluvial conglomerates

I Basal conglomerates

I:\ Pre-rift Pindos thrust sheet
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Lower group : Alluvial conglomerates and sandstones

Time gap of 15-20Ma since end of Hellenide orogen
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S(a) Syn-rift of the 1526m Profitis llias ( 3km in background)
Kerpini fault block

-------

Paleorelief up to 800m on basal unconformity

Implications

(1) Footwall topography is NOT only related to fault displacement
(2) Basal unconformity is NOT flat

(3) Fault displacement difficult to estimate



* Massive very thickly bedded, cobble, clast-supported
conglomerates with little to no internal structure



ely rivers and t

n=67

* Well developed orange-red siltstones, pebbly sandstones

» Tabular coarse conglomerate bodies several metres thick (up to 10 m),
with internal bar-form surfaces

» Rare lignites and lacustrine fossils




7 Onlap onto basal unconformity

H Paleo high on basal unconformity
}7 Paleocurrents (Rohais et al. 2007°++
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Sleistocene, 1.4-0.7 Ma
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Base Middle grop: jor ero
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— deltas infill paleovalleys up to 300m deep

Vouraikos delta

(c) western section centre section
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e Marine basin with giant Gilbert deltas sourced from the S.
e Depocentre migrates north abruptly in W, gradually in E

o Sediment supply increases and subsidence increases
« Extension rate increases to 4 mm/yr.
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iddle group : paleogeogqphy

deep turbidite basin
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eLower group :

*Pliocene-Early Pleistocene, 4 ? -1.4 Ma
Alluvial-fluvial clastics up to 1.6 km
thick, sourced from SW, fining to east.
*Extension 3.4-3.8 km.

*Extension rate 1.3-1.5 mm/a, Slow

» Dominated by high sediment supply

“Total N-S extension = 11 km = 3.8 km onshore + 7.2 km offshore

Middle group :

*Early-Middle Pleistocene, 1.4 — 0.7 Ma
*Coarse giant Gilbert deltas up to 800 m
thick, building north.

*Extension 3.2 km

*Extension rate 4 mm/a

* High accommodation+ high sed supply

/7 Onlap onto basal unconformity

H Paleo high on basal unconformity
/ Paleocurrents (Rohais et al. 2007°++
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Rift narrows.

Gilbert deltas in west. Alternating lacustrine and marine turbidites offshore

Rapid uplift to south at rates of 1-1.5 mm/a

Rivers continue to flow N in western rift, but turned south in east

Extension accelerates and concentrates on a few large faults along south

coast. 4.5 km of extension on the Helike Fault,
Average extension rate of 6.5 mm/a.
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Alluvial Uplift of northern Peloponnesos begins at 700 Ka
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Main Points

Antecedent conditions (relief and major rivers) imposed major
controls on sediment supply, sediment routing pathways and
depocentre distribution during early rifting

 Main sediment source to the SW — main

control on facies distribution in rift.

» High supply of coarse sediments by i
antecedent rivers overwhelmed early faults
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A) Initiation

Numerous small displacement faults
and growth folds define isolated
depocentres moncline above

blind fault tip
v, X

Displacement

a b c Time

B) Interaction and linkage

B & C linked; former relay

inter-basin indicated by transverse folds

increased
displacement
rate on B due to
stress loading

Displacement

Crossover

) basement high
a b c Time

C) Through-going fault zones B at site of rupture symmetry

has highest displacement and
longest segment length
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‘evolution and fault growth and linkage

Flat initial relief
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Consequent drainage
generated during footwall
uplift (e.g. Allen 2008)

However, antecedent conditions
can be more complex.........



Main Points: Rifting

*Three phases of accelerating rifting

e Migrates north in two distinct stages in

western rift but more gradually in east

e Deformation distributed on many faults in
earliest phase

e Deformation concentrates on fewer and larger
faults with time
» Rate of extension increases through time but
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Outstanding questions

 Detalled distribution of facies and depocentres related to fault
activity, paleorelief and river behaviour during rift evolution?

» Relation between erosional power of rivers and bedload

character? :
e Controls on the evolution of normal fault

=_ "8& - Crustal structure and its control on deformation L
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