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Abstract

Physical sorption is the key process in coalbed methane (CBM) and gas shale systems. Sorptive storage capacity, the principal
thermodynamic parameter, is commonly expressed in terms of excess sorption isotherms and depends on pressure, moisture content,
temperature, and type and maturity of the organic matter. It can be readily assessed by laboratory experiments at pressures and temperatures
relevant for CBM and shale gas systems.

For both exploration and production purposes, the kinetics of sorption and desorption and the interrelation of sorption and transport processes
are of crucial importance.

In coals, the cleat systems act as transport avenues while the microporous, polymer inter-cleat matrix system represents a source or a sink,
depending on partial pressure (chemical potential). Rate and efficiency of mass transfer between the cleat and matrix system, and the transport
and sorption rates within the coal matrix are therefore of prime interest for quantitative descriptions and modelling.

In carbonaceous shales, the connectivity of the pore and fracture systems determines the accessibility of the dispersed organic matter and its
participation in gas transport. Capillary processes and two-phase (water/gas) transport appear to be relevant both in gas shale and CBM
systems. Combined fluid flow and sorption experiments on cylindrical plugs under controlled temperature, pressure and stress conditions are
being conducted in our laboratory to study the interaction of gas sorption and transport processes in coals and carbonaceous shales with a
largely undisturbed fabric. The tests are performed with methane, CO,, and non-sorbing inert gases (He, Ar). By systematic variation of the
initial and boundary conditions, individual processes, such as compressible Darcy flow, diffusion, capillary breakthrough, sorption and
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desorption kinetics, can be distinguished and described by numerical models. Selected examples for both, CBM and shale gas systems are
presented to illustrate this approach.
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Gas sorption and transport in coals - m
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Notes of Presenter:

Gas shale work (GASH Project) started in 2009; and first results have been obtained.

Cooperation with University of Queensland.




Prosper Haniel #3 plug CT scan (cementation and min- m
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Notes of Presenter:

This XRD tomogram of a MVB coal from the German Ruhr area shows that pervasive cementation and mineralization add to the anisotropy and
heterogeneity of coals.

This coal has been investigated in the True Triaxial Coal Permeameter at the University of Queensland.



EXCESS SORPTION ISOTHERMS

— Pressure, moisture content, temperature
— Type and maturity of coal/organic matter
— Quality control (Inter-laboratory tests)

SORPTION/DESORPTION KINETICS

TRANSPORT PROCESSES

— Pressure-driven volume flow (Darcy flow)
— Capillary effects (two-phase fluid system)
— Diffusion and sorption

CONCLUSION




Excess sorption isotherms

» powdered coal or shale samples
e grain-size fractions
e cuttings




Gas sorption (manometric) _ m

High-pressure sorption of CO,, CH, on coals and shales
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samples from one well; variability due to composition, rank, ...

CH, excess sorption isotherms for moisture equilibrated coalj@ 38°C
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Note of Presenter:

Performed measurements on a routine basis; our recommendation is to perform measurements on moisture-equilibrated samples; temperature dependence is
of lesser importance.



Methane sorption on coal (moisture ef_ m

same sample; different moisture content

Excess sorption: TH-1/1, CH4, 45°C
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Methane sorption (shales)

CH, excess sorption isotherms on carbonaceous shales

0.18
0.16
. *
w— . | | - ‘ L]
3 o immature e e
g VR, = 0.48% y,--_—"‘.__‘-' a
3 o012 TOC: 14.2 % e e
E ,-":.—l'.'
= 010 e
] Py
2 PR reo L]
B el I ey P
5 0.08 - et &
: oy o E il
" 7 T L +GOU7152 (dry) @ 45°C
® 008 o : mature
-] ',l’- r Tk = GOOT152(dry)@ 55°C
", /}" A VR, = 1.48% AGUOT152(dry) @B5°C
E 004 - - TOC: 7.7 % . -
] X . . 0 +G007119(dry) @ 45°C
BGO07119(dry) @ 55°C
0.02 AGOO7119(dry) @6B5°C [
0.0D T T T T T T T T T
g bl 4 & B 10 12 14 16 18
Pressure {(MPa)

10




Gas sorption on coals (quality control) - m

CARBON 47 (2009) 2958-2969

available at www.sciencedirect.com

-z .
*,* ScienceDirect

ELSEVIER journal homepage: www.elsevier.com/locate/carbon

European inter-laboratory comparison of high pressure CO,
sorption isotherms. I: Activated carbon
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Part Il (natural coals): submitted in March 2010
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Excess sorption isotherms

* moisture content is the most important (but
least controlled) parameter!

* holds for coals

e probably also for shales

12




Sorption kinetics

» powdered coal or shale samples
e grain-size fractions
e cuttings
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Fuel 89 (2010) 569-580

Contents lists available at ScienceDirect

Fuel

ELSEVIER journal homepage: www.elsevier.com/locate/fuel

High-pressure sorption isotherms and sorption kinetics of CH4 and CO, on coals

Dongyong Li*®, Qinfu Liu?, Philipp Weniger ", Yves Gensterblum P, Andreas Busch®, Bernhard M. Krooss >

* Department of Resources and Earth Science, China University of Mining and Technology, Beijing, PR China
P [nstitute of Geology and Geochemistry of Petroleum and Coal, RWTH Aachen University, Aachen, Germany
©Shell International Exploration and Production BV.. Rijswijk, The Netherlands

Li et al. (2010)
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Pressure equilibration times (ranging from minutes to hours)
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Analysis of pressure decay curves during the 1st sorption step
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CH, sorption kinetics (rank effects) - m

CH, sorption kinetics for three different coals at 45 C.
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CH, sorption kinetics (temperature d_ m

CH, sorption kinetics of anthracite at 35, 45 and 55 C
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Transport processes

e cylindrical plugs (28.5 and 38 mm diameter)
e controlled stress conditions

18




Fluid transport experiments — m

Multi-purpose high pressure triaxial flow cells:

Faxar (Max) = 100 kN, P, (Max) = 50 MPa Experiments:
Cylindrical samples: Ax(max) =3.5cm, @ =2.85& 3.85cm

(a)Single phase system:

axial load

¢ Gas permeability on dry samples
A + Steady state

¢ Non-steady state

~ kabs(gas)

¢ Water permeability/saturation
2>k

abs(water)

(b) Two-phase system:
e “gas breakthrough”

2 pc(entry, breakthrough)
2 pc(snap—off)

> keﬁ(gas) f(Ap)

2> D

eff
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Notes of Presenter:
Schematic — assembled -- individual parts/components.

The sample is placed between two stainless steel pistons.



Fluid transport experiments (“gas break_ m

e Closed volumes, separated by the (water-saturated) sample
e Monitoring of the evolution of upstream and downstream pressure with time

\ gas volume
P1 o
g
=
1]
(%]
2
o
porous disc
\ 9as volume t breakthrough (exp.)
P2
used by Hildenbrand™ et al (2002, 2004) for assesment of capillary sealing efficiency
“now Amann 20

Note of presenter:

Pressure equilibrium between upstream and downstream compartments is achieved before the gas/water interface reaches the sample surface.



Fluid transport experiments _ m

Water displacement between two gas-filled reservoirs
(up to pressure equilibrium)
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Note of Presenter:

Pressure equilibrium between upstream and downstream compartments is achieved before the gas/water interface reaches the sample surface.



Fluid transport experiments - m
Water displacement between two gas-filled reservoirs
(with capillary sealing)
EST 25593 (plug #2, 1st breakthrough)
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Note of Presenter:

Black curves are measured; red and blue curves are calculated.




Characteristic pressure curves - m

1) Single-phase flow (water displacement)
v

Prassyure, P

“f

) Initiad stabe t () at time {c) givsiwater interface

Thna, reaches the sample surface

2) Capillary breakthrough: AP, ..,> P
i: water displacement

ii: gas breakthrough, gas viscous flow
iii: snap-off, gas diffusive flow

i ii
¥ 3) Caplllary Sea”ng: APinitial< Pcapillary entry

i: single-phase flow (water displacement)
ii: capillary sealing, diffusive flow

capillary entry

¥

Prasury, P
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Notes of presenter:
These experiments are performed by imposing an initially high gas pressure gradient across the sample.
On both sides of the samples there are two closed reservoirs with known volume.
The pressure on each side is measured continuously by pressure transducers.
In the left plot, where the absolute pressure is plotted versus the exp. time we observe that
after a certain time the pressure on the inflow side will start to decrease,
while the pressure on the outflow side will increase;
here gas flow becomes possible;
pressure difference will decrease until a constant pressure difference is maintained.
This data can be used to calculate the keff using Darcy’s for compressible media.

We observe that after breakthrough keff will increase, run through a max., decline again and ending in zero keff, when constant pressure gradient is
reached.

Transforming the characteristic steps into the conventional Pc/Sw plot, where Pc equals DP between both sides of the sample,
we start with the initially high pressure difference.

After a certain time, breakthrough of gas takes place; thus capillary pressure will decrease.

This Pc is still high enough to displace water from pore space until we reach a certain Pc-value, with max. gas saturation.

Lower Pc-values are not high enough to displace water, which is then re-imbibed again, shutting more and more pores until the last interconnected pore
is shut off.

Here the residual pressure diff. is reached, which we interpret to be equal to the Pbreakthrough of the slow drainage process (here plotted in grey).
So key parameters are.
this final capillary pressure is the pressure for which a seal starts to leak

and keff as a function of pressure decay, thus gas saturation.



Capillary pressure-controlled gas brez_ m

He breakthrough test on Yangquan anthracite plug #1
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He transport through Yangquan anthra_ m

He “breakthrough” tests at 45°C, P
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Numerical model (He diffusion in coal) _ m

Yangquan anthracite #2 experiment

Der= 8. HE-10m?/s
Henry constant: 8. 7E-05 mol/m3¥Pa

Pressure [VM[Pa]

4 A

upstraam prassura (=p.)

....... Downstrasm pressure (2xp.)

upstraam prassura (mmerical)

%24 (|~ ooooo Devnstraam pressure (numerical)
PTTTILeRL IREFEREE
i ----d--.n."\-\hluullulnu
.-p-o,,_.———"'"_- -
.t“‘lw
0 watnw I | |
0 200 400 600 300
Time [h]

Upstream and downstream pressure curves can be explained by a
diffusion model with a Henry-type constant for He “dissolution” in coal

26




Yangquan anthracite #2 CH, and CO, te_ m

8 [
D= SH-1 Sml/s D,=1.2E-12m?/s
6 =
7 T g 4
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g CH, % . co,
§ 2 4 pressure (exp.) I — pressure (exp.) _
|| = pressure (mumerical model) “oo pressure (numerical model)
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0 200 400 600 S00 0 200 L]
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Results of numerical (finite difference) model:
© D
Gas ® K, [MPa <t
[mol/kg] Rl [m2/s]
CH, 1.01 1.79 5.0E-13
CO, 1.60 0.82 1.2E-12

* Essentially no gas transport across the sample (all gas is taken up)
« Effective diffusion coefficient of CO, 2.4 times larger than CH,

600 800
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Combination of experimental techniques for
sorption and fluid transport measurements
provides improved insight into processes
relevant for CBM and shale gas systems

Simple numerical models were successfully used

for interpretation and consistency-testing of
experimental results
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Thank you!
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