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Outer Shelf and Shelf Crest: we- and ~ U I  M. 

This segment o i  the Permian R d  Geology Trail 
includes progradational outer-shelf f& ti the w- 
mou Yates Fcnnalion and bolh shdf-cresl and possibly 
Wer-sheli i a c k  of dr bmal Tansill Formaliar tfig. 7). 
The reeflouter-shelf transition occurs at Stop 23 
(switchback Cj, and this portion d the trail extends to 
lhc ridge crest istop 28) j& a h -  7.000 h (fig 34). The 
total stratigraphic intewal expsed in this M i o n  of 
t k  trail is 60 m !?00 f11, slightly less than the total 
tcqxgraphic relid because of 1' to 2' sbuctural dip to 
the nonhcast (I-lays and K e O l e ,  19581. The Yates For- 
mation as e x p o d  along the trail is 33 m I1 10 fr) thick 
(rig. 351. Farther up canyon. in an updip position 
when. the uppnmort pollions of he Yatcs Fornution 
arc m e d  by pou-upliit erosion.  dl and others 
(1953) measured a maximum thickness of 88 m 090  ft)  
for the Yates Formation. On thc Nonhwest Shelf, 
&wer and Harris (1991) demonstfaled irm, subwdace 
corrdatiw ha t  the Yates exceeds 122 m (400 il) in 
thickness. Thinning o i  Ya:es shelf siiata tmvard the 
basin occurs as Yatesequivalent Capitan reei iacies 
climb stratigraphically. Thw. the P m h n  R e d  Gdogy 
Trail, which curs the Yates in a position close to m 
tcminal shdlmargin position, records only the upper 
quarter to third of the Yaies section I ~ I .  7 and 35). 
Tansill stram compose the uppermost 26 m (85 f11 of 
slratigraphic scvlion along lk trail. In mom complete 
sections lo the tmth alarg depositional Mke, Tamill 
Fonnsrion thick- reaches 122 m (400 ftl IHaycs, 1964). 

Key dxm.atiom cmerning this paion oi the trail 
are (1) the range of depositional facie chraaeristic of 
the outer-shdf rntl shelf-cnst iaciu tracts of he Yates 
and Taruill Formations ICY. Neese and Schware. 1977: 
Est&n and Pray, 1983: tludq, 1989: Neesc. 1989; 
Born and Harris, 19911, (2) the primary depositional dip 
[fall-in bed gmm@9 of the Yates shelf profile irom the 
&If cnst clm\,n\vard to ihe shdi-edge red. 13) the d- 
wl arrangement or stacking panerns oi #me facies in 
mll-scale 13 lo 9 m 110 to 30 hll, upw~rd-coaming 
cyxles. 14) a key expowre surface hat may rcpnsent a 
seqwnce houndar). within the Yates outer sheli. and 
(5) dr progr&ve upward increase in dolomitizatkm 
d shelf arata follmving the averall progradation d 

evdporitic innerhelf facie oac& owr wtef-shdf. open. 
mine depik .  

Six stops are desaibed in this p o d h  of the trail 
(figs. 34 and 35). The liru four slop arc in dw Yam 
formation: (11 the reefbum shelf transition IYop 23). 
O) an exposure d a c e  within the outer shell (Stop 24). 
(31 outer-shelf upward-coarsening cycles (Stop 25). 
and (4) mixed silicichsriicarlxmate outer-sheh' qdes 
(Slop 26). The remaining hro slops arc in the Tamill 
Fmt ion :  t j l  shelf-crest cy~les (Stop 25) and (61 outer- 
shelf dolopadistones istop 28,. & in other porfions of 
Ihe trail, one must be aware that the trail cuts vertically 
thmyh the mica as well as lawally across deposi- 
tiorwl strike and dip. blos~ of thc acrossdip iacia changes 
occur behem StqK  24 and 26. Stop 25 contains lateral 
facie changes within outer-shelf cycle: as they are tra- 
wsed by the trail through weral hundred feet d 
depositional dip in a sAaward to landward dire-. 

STOP 23. Reef/Outer-Shelf 
Transition Zone 

AlUq,23thehailhrm~frOmanorche~toanocth- 
west heading as it passe5 im the reef into the shelf at 
nvilchback C (figs. 34 and 351. This [mition rcpams 
the downdip terminah d inclined ~ e r - s h d f  or iallin 
becb as they pass into the massive reef facies. The 
panoramic \ k v  iran the trail to the northeau displays 
well h e  geotwric relationship among the nearly tlatlying. 
uppcrnml ~ l i cmf  sv.ita, the more staply Lwsinward 
dipping. crudely stratified outer-sheli beds, and the 
massive red. This fall-in bed g-ry i s  best dcvelcped 
in older hen Rivers slrata IHurley. 19891 but is a h  
apparent throughout the Yates Formation and to a lesser 
degree in the Tansill Formaii. Hurley (1989) urd 
m a l  iabrics to s h v  an original depositional dip of 
8* for Seven Rivers fall-in beds and an additional 
portdqmsitional mwprinl of 2" to 3' due to IMtnic or 
compaaional tilting. for a wl oi  100 to 1 la. As lhe 
Capifan reei generally shallond through time t 8 a k d  
and Yurewiu. 1989) tk dii a' the bU-in beds became 

progrmsidy less. Hmrwer, s~atification on the ronh 
wall d McKinrick Canym Ifg. 6) show aprent  rp 

pealed shallon.ing of the red and progreske llanening 
a i  fall-in bed d i p  rhat arc related to n m  rhon.rm 
variatiom of the shelf margin. 

For -15 m (-50 hl sheliward abng the trail f m  
switchbad C, outcqx of limestones wi~h minor dolo. 
stones display a mix of depositional iabria including 
boundstone. wackestone, packstone, ~ n d  grainstone. 
Bedding is poa ly  developed and ncither crossbedding 
nor biotuhation has been observed. One area of 
bundstone may rc~ment a low-mlief mound. A high 
percentage of grains displays miaitic !cysnduaerial?t 
coatings. The skelel~l component includcs mollusks 
b t h  bivalws and large bellemphon gaslmqc&) (fig. 36aj, 
green algae lmina ~Mzzia), sponges, crinoids, and rare 
foraminifers. including ihe fusulinid Rcichelim (fig. 36b). 
One bedding wrfacc displaying largely intact pximens 
d crinoids and clwers d pmgc spicules rqcseno 
Jightly rmwrked filter-feeding communities ha t  a u a  
to moderate wave energy a prcse~~aria, by rapid burial 
orbah. 

A recessively weathered zone above iron-stained 
pack10ne53 m(10 hl a h  tkbascoithearrerhetl 
strata marks the position of a laterally discontinuous 
0.2-m-thick (0.5 fi) siliciclaUic siltstone bed. Siltstone 
beds typically mark high.frqwny 15th order?) cycle 
boundaries. and sections containing several stacked 
cycles rich in siltstone can be wed to dd i r i de  the 
Yates Formation into mappable units (Candebria, 1989; 
Borer and Hams, 1991 t. This sillrtone b very well soned 

F l G u R € w . o s l q u e a e r i a l ~ a p h d u p p r ~ d  
Rmian Reef Trail *laring fed Slaps 17-22 a d  
shrl( Stop3 23-28. *atan mukm. nupr rwitchba&, 
d kty s ~ t i ~ ~  ,&tiom. Slop 24 &bib rrhliaa 
associated wi th  the loner uqucncr boundary rhoun, 
S t o p 2 6 c o u m k q ~ ~ ~ ~ b d ~ l o d n i n  
Ik top of lhr Yale$ Fomution. and Slop 28 ilkntnlrs 
b c i c r ~ ~ n u x ~ f k o & o g v i m i n i b c  
~ ( r r a l l l u q u n c r .  
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+pear as later phases, probably &ired i r m  leaching 
o i  iron-bearing silicicbsrics fmm :he silatone. 

Vertically ocientd, tabular breccia Wies 10 to a cm 
(4 to 16 inches) wide occur in joinls af nvitch5ack G. 
T k e  h i a t e d  jointi, k 1 5 e d  at Stq, 22, are sekhely 
dolomitized and %\vather recessively, defining a diaindwe 
ree' panlkl joim sec (fig. 3Gl. 

STOP 24. Exposure Surface 
within Yates Outer Shelf 

Immediately aboi-e, and in part superi~nposed 
upon, the reef!ovterhelf transition iacies is a distinc- 
tive fenesiral laminitetbreccia unit that displays 
widence of subaerial exposure and significant iacies 
oiiset Ilig. 37). The first evidencc oi this exposure event 
seen on the trail i s  a: Stop 24. hallway ben\secn 
swi%hba&s G and H (figs. M and 39. -6 m (-20 W 
before reaching the three krge p~ndcrosa pine trees 
that cover the trail. Fenestrally laminated columliar 
stromatolitej and laminar fcnestral c/anobacterial mats 
rest directly on packstones with a d i m e  outer-shdf 
fauna. suggeing that nwater deph shallmd abrupJy 
(facies ofisec) (rigs. 37, 384. and 38bl. The stromatolites 
are cwpxed  o i  ligh:-gray micrite and are surrounded 
b gray to tan skeletal pack>mne. They display a sligh:ly 
upward-widming prolile in cross-sectional view in low 
outcrops along th+ ssarth side of the :rail (65. 3%). Plan 
vie% display an interlocking nenrrork of cyancbaaerial 
mats with intercolumnar sediment deiining circular 
shapes ilig. 385). 

From this smmatolite outcrop shelfward along the 
trail to s\vi?chback H, a variecy of features including 
breccia and ienestral structures are superimposed on 
lyrical wlerheli Polydiexdina wvackeuones (figs. 37 
and 3%). just a b w  swiichback H -3 m (-10 k j  h 
yond the 6.800-k elevation marker the trail crosses 
the exposure surface again in a more shelf.vard position 
r h w e  sheec cracks and incipient tepee munures are 
capped by a recessive but persiwent sillstone unit 
0.3 m (1 fU thick that is locally stramatolitic. Lateally 
along this svrfxe sheec-crack breccia complexes up 
to 7.6 ni I25 %I thick are  el@ <fig. 38d) with peloidal 

internal sediment a d  paleoangmite botryoids filling 
shes cracks. 

The recessively t w w k e d  siltstone esting atop tk 
massive sheet-crackbreccia complex ol the expasure 
surface creates a distinctive ledge (fig, 34) th3t can be 
uaced i r m  McKiitrick Canyon nonhwvard strike 
at least 4 km 0.5 mi) norlheaw to the nex( major d ip  
oriented red exposure at Big Cankxm (fig 1) and is also 
traceable updip fac wcral hundred feet {figs. 6, 3&, 
and 37). The combination of knestral fabics, shallcw- 
water columnar siromatolitic growth form, and thick 
sheec-crack breccia complexes with peloidll internal 
sediments suggms hat this p i o n  of the ovrcr shelf, 
down to a point almost level with rhe reei, under- 
vent prolonged subaerial exposure. The abrupt 

from openmarine to subaerial setting (izcies 
oEse>. rather than the typical upward-shallowing 
facies pqmdation, suppork inierpraaion oi a majos 
shallwing event and probble sequence brlnc!qdarV 

The top of the expcMlre surface along the wail is 
also equivalent to he top of the Yates '6' member of 
Nevidl and o h  (1953) as delinod by physical correla- 

tion with their McKinrick Canyca sections and the 
prwnce of the fvsulinid Pol,diexdinii up to. but m t  
above, this suriace (fig. 35). The unit immediately 
below this exposure suriace is h e  Yates 4 sequence. 
P d j d i d i n a  also cxcurs in the slope no hi&e than 
the M o n i t x  Limestone Member oi the Bell Can~on 
Formtion. If this correlation (Tyrrell, 1969) is valid, 
then is is -ible:o corarua a time line from 5top 24 of 
the auier-shelf Yares Formation thmugh Srcp 19 within 
the reef to Stop 14 of the Capitan slop (:is 39). In ihe 
toe oi slcpe, the Bell Canyon sandstone intwal be- 
t r m  the hlcComlx and Lamar carhaaw tongues may 
represent perids ds shcli b!~assing of siliciclas$ics 
during repeated shelf enmgence (see rig. 4 and Srop 26 
discussion). These Bell Canyon sandsones pinch out 
abruplly uplope into carbonate debris of the Capitan 
slope (rig. 20; King, 1948; Newell and oherr. 1953; 
Reeclonann and Sirg 1986). 

At svitchteck I the trail turns again to an oblique 
pilleo-landward (vrest-mnhmstl cnientJtion and climbs 
gradually topographicallyp parallel to the himvard- 

aaer.sidi iaI1-in M s U g  3;). 

,s.;L.w:y~~ ~ -, ., '- -7 - . : +? 

:ks 01 leneslral laminjte Roalin 
marine outerahel: pack 

Approximately 800 R in dip :ransect OUOSIO~ 

J X 2 . W  Schematic diagram showing fxiw retaliom donnunti- rrposurc of outer B c l f  arocialcd with top Yam 1 qumcc  
boundxy. hlurer imlu&d edom saa\kard to tadward a m  2# rn (800 ill o i  depodtimal dip vansect are crubona*e mmtolite, 
ienotral  lvniniler and brcctiw, m l  0.6. lo bmlhkk (2-10 20-H) rhn.cracWfcneival c w l r x a .  Ormrrlic &ward thinning d 



Evidence of low-amplirude (1.5 to 9 m I5 lo  30 hJ) Lindsay. 1931; bnnsnfdd, 1991), and recognition oi 
high-frequency ~ w i M i o n s  of relalive sea Ievd is cycliciw as h e  chanr indc  d e p i 8 M  pamn d 1 

I Horeaical oxrpyfotion - 1  
FIGURE 39. Approximate ti&& m W i g  ywngc* kmwn 
occuncm d lhc fumlinid PoI~eaodin~ a b n ~  Ik trail. This 
uppermort occurrmcc cormpondr to lhe c a p u r n  sur ian  iUur- 
u a l d  in Iigurrs 37 a d  38 and dcnonslraeer a very deep 
dq&tiod pmrik for Ihcplalfam, ma$* a1 lhii lbn. 

h e  Yate and Tamil p c ~ i o n ~  d rhe Pennian will bp 
cmphasir~l in Stops 25 lo 21. 

O u t c w  3 to 9 m 110 lo 30 fll hi& on the nonh 
side oi rhb trail MI the next ssml hu&red im show 
a layered erosionally resistan: to mreccssively wwalhered 
paUen characteisric of upward-coarseniog carbmte 
cycles of :he outer sheli (finer graiincul = recessive, 
caarscr graiained = resiant; 6g. 34. 33, 40, and 411. 
These cycles.. from above t k  exposure %dace to when? 
the thicker ~sandslonccappcd cycler appear .>I Stop 26 
jw atme the 6.900-it marker. are quivalcnt to h e  
bvm pation d che Yam *C" d 8Wdl and elm (1953) 
or Yates-Tansill sequence o;' this chapler {figs. 4 and 35). 
In wertiwl m s i o n ,  these cycles a! compoiod oi basal 
peloid-aIgaI.skelecal packstones locally displaying large, 
subvenical pdoidAlled bumvs (iig. 42a and 42b) that 
are succeecM by mollusk-algal-peloid packstones and 
grainstcms ifig. 42c). Skeletal components char,icleristic 
d the aurer-sheli k i e s  are mollusks, crinoids, green 
algae, the scaphad P h i m 1 y ~ ,  and m l k r  h h i c  . . - 
foiminifers. 

A key aspm of Stop 25 is  ha1 s single outerlhelf E W B U &  O u t ~ o p  f i -4~  p h o ~ &  of Stop 24 npwurr W l o c x f h  of @= dmn in % 3n: *) fall-in bcd can be traced along ;he nail seaward to land- map 01 d l  COI- sllOnuldi(a with fmstrrl pmity (uak in can). (b) p*n view of urmu~olircr along Roor of In& Xotc Uml Lv Ihe mil %, .lO, and 41), alkn\.ing lighlwy nutnill is*romr(dihanl da&s &ul&id d i r  defines m d l y  qlindrical i n t d m n u  am- f xak  in cm), 
obscn.alions of lalmal changes wGlhin a Ic) pholomicrognph of *deral ~ a d r a l w  uith UIC 1 1 3 ~  bcnlhii fumlinid P43durodk blalry spar tilb intra*clml and minor 

int-,,+,(d) a n c m p ~ l o ~ ~ ~ i ~ ~ l ~ ~ ~ ~ ~ l o - ~ ~ m ~  p-,,-- C\5 the trail follows this single cycle irom ihe reef 
o l t i r e 3 8 c ~ k b r v I h c ~ Q w d f o ~ ~  w a r d  sheli west, an accompanyiq coarsening d 



FlGUU 40.amic photomosaic a d  mlerprelirc sketch of Us patim d ihc MI dvlmd in Ycp 25 Wing &.. uut hl hto the baln The bRb bed& cbn drvaitfr- contaim Mdnom 
m ia bxe. pbib*Lkul paciaone in middle a d  lpper  patiom in the mom hasinward ex-, ud pads- ga&g uprnnl hto pbdir-hkhl W t m e  * &p pthsd Slop 15 dag the mi 
O&r qrlrr sequence bandries, a d  lhe b r a h  of mrvsucd w c t i a  from figup 41 n ako shonn. 



ALLOCHEMS 
- General skqe+l Grains 
G GaSKcwa.3 
* Patmalozoandebrib 

8 i v a h  
a olsygadacean &me 
.Ooids 

a Pisn-m+ - - 
fl Stmnaloines 

Vmksl burrow tubes - Shen m rpkr-anpta 
ofoau5trati~iClli0n 

FABRIC TERMS 
m Mudsfone 

'i8ase w Wackeslwle - Algal bminauh 0 Packslone 

D Grainstone 

D Soundaone 



grain size rellects an inoease in energy oi the &pi- 
liwl envinnment with progrssiw shoaling if%. 42a 
and 12c vg. fig. 42i and 42% and fig. 431. Bic&nhtion 
gives way to crass-stratification in medium.uale, low- 
angle, tabular-planar to wedge s e h  (compare fig. 32a and 
42h and fig- 43). Grain size and sorting also increase 
updip (ti& 42i!. Mwc d the grains are p h i &  interpreted 
w habe been deriwd irom the pisolitic sh& crest by 
worm surges d i r d  of&m (fig. -126%). This b;lnrct 
alsa displays the basinward-sloping gearrtr). d these 
outer-shcli Warn as the trail climbs vertically some 9 m 
12 m (30 no 40 ill b e e n  downdii and d i p  patiaa of 
Stq, 25 ifig. 40). All iacies champ desoibed above aar 
in the rehiwly h l l y  cademed dy, Qnancc d 1-10 m 
iJS0 6) {fi& 43). 

In summav, dw topographic sloping character o i  an 
individual fall-in bed can be obscr~ed as i t  plsses irom 
the &?If mvard the ree!; as can a distindw upward- 
coarsening of iabrics within a qx le from bunwved 
padeitones lacking pisoids to crass-stratiiied grains- 
with inmasing J~OUMS oi  pisoid grains. The shallowing 
of facies as this cycle is traced imn Lhe red toward 
the sheli c m ,  or up a fall-in bed, suggests tha: at 
this time the reef was not the crest of the shdf profile 
168. 43). If the nwginal mound or fall-in model of the 
Capitan profile is wnect (fig. 4, then a minimum 12 to 
15 m 140 to 50 fO iall d sea level i s  recorded by the 
exposure suriace observed at Stop 24 that brought 
peritidal iacies into psoximity with the red !assuming 
rheli crest to reci relief of 12 to 15 m 140 to 50 t i l l  
iHurlw. 1989; Borerand Harris, 19911. 

Mixed Siliciclastic, 
Carbonate Outer-Shelf Cycles 

\\%ere the trail crwses the ledgeionning top o i  the 
arm-shelf ~ l e  of Stop 25 just a h  rhe 6,90&13 m a r k  
(fig. 341. h e  next 8.5 m 128 ft) d section displa)r hvo 
disinctive sandstone-based skeletalpeloid ddopack- 
aonc cycles (figs. 35  41, and Ma). These nvo recessive 
sandstone beds are used to define the top of the Yates 
Formation !Ha)% and Koogle, 1958; Hayes. 1964) and 
are easily traced laterally in expcwres d the sheli strata 
(figs 3 1  and 11 ). On lhe basis of Sfra@aphii position, 
the sandstones are probably equivalent to the sand- 

=one beds of the Tripla unit of rhe t\'alma C a n w  area 
{Esteban and Ray. 1977; Neere and Schrvartz, 1977; 
Bow and Harris. 1 989: Candelaria, 1989; W. 1989!. 
The sancirtones are tRu obsmed in the cliff exposures 
(figs. 40 and 44al but are present along the trail as f l a w  
bedded, low-relid qmures. 

Basal sandstone beds are rich in mollusk and 
b q v m  ~~ (fig. Mb). Moldk pores airer feld- 
spar and small carbonate graim occur in the sandstones; 
authigenic bolinite and blocky calci~e spar are abun. 
dant. Parallel lamination is characteristic of the 
sandnone beds ifig. Uc!. Upper carbonates d these 
cycles are &IP dolopackstones containing mollusks, 
green dl-, and peloids. 

These sandsldcarbonate cycles are m a  ctwraaer- 
istic of the final ages d p!dorm propdation in the 
Permian deposits of the Nwthwest Sheli, wherein 
siliiiclastic-dominated iacies tracts o i  the middle rheli 
have prograded to a position proximal to the basin 
margin. In this sheli-margin proximal position, only 
minor b l a d  fluctuations are requid fw siliclastics 
to reach and bypass rhe Mncr shelf. Nervell and ohm 
(1953) demonstrate that sandstone-dominated shelf 
equivalents of the lower Yaws ~rheir Y a m  Al member 
have prograded to a point only 2.9 km i1.8 mi) shelf- 
ward of the mouth of McKimick Canyon. Borer and 
Hank 11991), \ d i n g  in the subsurfaccYates Formalion 
d the N m h w s  Shelf and wexem edge d the Central 
Basin Plauorm. demonstrated hat this cab te - I *  
sandstone facies tramition prograded at least 2.4 km 
11.5 mil s m r d  during Yatej deposition. If this observa- 
tion is applied to the McKinrick Canyon area, the 
sandstme-dominated middicsheli Rcies tract ~quivaknt 
to h e  uppemml Yates Formarion on the trail possibly 
occurs less than 0.8 km (0.5 mil updip from th& p.lion 
at the maah a-Mcccl(iaridc Gqm 

STOP 27. Shelf-Crest Cycles 
Above the second sanduonebased cycle of Stop 26, 

which marks the top of h e  'fates Formation. the nail 
affords partial W u r e s  of three carbonate cydes of 
lhe Imverrnost Tamill Furnation that are included here 
in the Vines-Tansill sequence (fig. 35t  The 26 rn (85 itl 
af Tamill iravecsed here illustrates evidence of initial 

upvarcLincreasing d i a l  exposure and dev$opmcm 
of sheet cracks and tqee rtruc~~turcs idhvcd tyv marine 
tramgression {fig. 35). Lww Tansill strata below ihe 
Ocitillo silwone have been correlated biosiratigra- 
phi i l ty with the Lamar Limestone Member of the Bell 
Canyon Fornwkm fl)dl, 19691 that occurs lmwr on 
the trail. 

Tepee dructucs in h wles are well exposed in 
the dii above *op 26 ( t i  401, hrr they are not d 
by h e  mil umil nesr and bepad nvitchback J 4% 341. 
The b w d & t k e q d e s  kwelleqmd in them 
good m m p  bL.yond Stop 26 and h v s  an qwad 
coarsening oend irom massbe, recessively neathered 
ddopac&ones (fig. 4 4 )  lhrovgh d o n a l l y  reristam. 
b-angle cross-stratifd, intraciast.pdoidal dologain- 
51onesmienslral ImninaeS wimrmall q ~ ~ m u a ~ ~  
(@ 35 and -Me). 

EUJEEA. Outcrop and tbinnctioa p-ae d 
S(op 25 oukrhclf cycle (illmlrariaa b l e d  on 6p. 4a 
M d  ra. o ouscmp phoboBph rharimg \~-* hr- 
rowd gcbi-ahat packslone (bl pholomicromaph d 

of chr iprbcoazn'i oute& qc le  in a d d i  
p d m  *ilh micrilic c w  on lrga wains. m ' w  
dadlSbmsdCiki*Ir-60R-tndModp/ 
calcite G l l i  in(mlrekbt and iakrputidr pom'ly, 
(dl shcebl(nla*d pbdlc w c W a  m lobm owim d 
~ e r & t f ~ d e i n a m m ~ p o r i t i m & i o c c .  
(el pho)ani-h d Id) M a x  corm Mi- 
po;lrrcm. & p i t 5  hKlu& .ui&~aDd d* 
pbdites hm *y n u c k i  a d  r&li+ tbm w&c* 
(0 outcrop phobgmph of Witc @+stme in raidde d 
ouler-&df o/dc. (61 plo(olllinogqb 
of tfi, p h H n  are rbnibr to b s e  of (e), imtmpttick 
prosily faled p i n w i l y  by h p c i ~ a a  6brots calcite, 
6) otanop r*w of low-angk cmss&alif*d skeletal 
~ 1 ( ( b L o O g t r d n - u d e o i n ( o t U 1 i s c y c k u -  
povd 01 hc mi2 m p h o m *  
@stme with nlCdcrdDpcd i-aa cat& 
r d k ~ & k ~ . N ~ t h u i h c ~ . b a l a o c ~  
ircovrer@dandbemrsoncdChndwqdr-capphg 
pldenlane d (c). 
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