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Abstract 
 
As extraction of oil and gas from poor-quality reservoir rocks becomes more prevalent in the United States, knowledge of the size and 
character of pore throats and pore space in these reservoirs with respect to their potential for producing hydrocarbons becomes even 
more important than in the past. This small “world”, which ranges from angstroms to nearly a millimeter, is viewed through such tools 
as the optical microscope, scanning electron microscope, mercury injection and computational chemistry. Permeability provides a 
length scale that is strongly, but not uniquely, related to pore-throat size. Nor can pore-throat size be determined unambiguously with 
other techniques. Each method of investigation, whether microimaging, mercury injection or gas-flow experiments, requires a physical 
model of pore-throat geometry in order to convert the measurements to a microscopic size. The choice of a flow model influences the 
choice of a statistic (mean, median or single value) to represent pore-throat size in a given sample. Experimental results drawn from 
past studies are combined into a spatial spectrum to help envision the relations among pore-throat sizes in sandstones, tight sandstones 
and shales. 
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It’s a small world after all--
The pore throat size spectrum

Phil Nelson
June, 2009



This talk is an elaboration of a short paper:

Nelson, P.H., 2009, Pore throat sizes in sandstones, tight gas sandstones, and shales,

American Association of Petroleum Geologists Bulletin, v. 93, n. 3, p. 329-340. 

References for information given on the following
slides are cited in the paper.
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This talk is devoted to populating this graph with sizes pertinent to movement of fluids
in siliciclastic rocks.  Seven orders of magnitude span the range from molecular sizes to
sizes visible to the unaided eye.   We start with two scales used for measuring solid grains--
the Tyler sieve size scale and the sedimentologic phi scale.
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Although we specify permeability in units of darcies (D), millidarcies (mD), microdarcies (mD), or
nanodarcies (nD), the physical dimension of permeability is the square of length.   The permeability scale 
at the top is compressed so that two decades of permeability correspond to one decade of pore throat
size.   The two transforms used to compute a pore throat size give different results because the porosity 
factor differs between the two transforms.  The four open circles show the migration of the two extremes 
and two intermediate permeability values.

Because using permeability data to derive a size presents some problems, other measurement methods
will be used in the remainder of this discussion rather than permeability data.
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These observational methods span most of the seven orders of magnitude.  The left edge
of each horizontal line indicates the resolution of each method.  Next, we consider the 
resolution for mercury injection.



 
 

 

 
 

 

Capillary pressure in cylindrical capillary
at static equilibrium:  

P(dynes)  = 2 o (dyne/cm) cos0 / R(cm)

For a mercury-air system and converting
to units of psi, um:

P (psi) = 213 / D(um)

At maximum pressure of 60,000 psi
D(um) = 213 / 60,000 psi = 0.00355
   or D  = 3.55 nm



Water Molecule

From:
http://www.lsbu.ac.uk/water/molecule.html

Polarity



Methane

From:
http://courses.chem.psu.edu/chem38/mol-gallery/methane/methane.html
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That’s it for molecules.  Before going on to rocks,
in the next two slides consider two other areas of 
inquiry where the small world is of paramount interest:

(1) fabrication of integrated circuits and (2) biology.
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From:  http://en.wikipedia.org/wiki/Prokaryote



Wardlaw and Cassan (1979) measured 27 sandstone samples:

Mean particle size from thin section.

Mean pore size and standard deviation 
    from resin casts of pore space.

Pore throat diameter by mercury injection at threshold pressure
    and at 50% mercury saturation.

The next slide shows their data on a plot similar to their original
publication, where d50 represents the pore throat size at 50%
mercury saturation and dT represents the size at entry pressure.

The following slide shows their data plotted on the pore throat size
spectrum.  These data represent good quality reservoir sandstones.
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Slot-like pores have been observed in tight gas
sandstones, as shown in the next slide.  Some 
investigators use a slot pore model to compute 
pore throat size, instead of the cylindrical model
used for mercury injection measurements.  

Pore throat sizes for tight gas sandstones are 
plotted on the pore throat size spectrum -- values
are generally less than one micrometer.



Provided by 
Dan Soeder
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Values for shales are shown next.  As was the 
case with tight gas sandstones, different investi-
gators give different measures of the pore throat 
spectrum.  However, such differences are relatively
unimportant on the logarithmic scale used for the plot.   
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Summary:  In "conventional" reservoirs, a large gap exists
between pore throat sizes in reservoir sandstones and 
the shales that form seals.  
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Summary:  Pore throat sizes in siliciclastic rocks form a continuum from
around 20 um to less than 0.005 um.  The smallest detectable mean pore 
throat sizes are roughly ten times the diameter of water and methane.
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Exploitation of tight gas sandstones and shales
requires access to smaller and smaller pore spaces 
within the pore-size spectrum.

It is hoped that this overview provides a useful
perspective on these new developments.




