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Abstract

One dilemma in sedimentology is that multiple depositional processes can produce similar features while one formative process can
generate multiple patterns. A comparison of (1) depositional energy trends from grain size and primary structures, (2) placement within a
stratigraphic hierarchy, (3) ichnofacies type, and diversity, and (4) sedimentary body type and associated architectural changes are used
to assess the causal mechanism. Variations of these attributes reflect flow initiation processes (flood vs. failure), flow evolution (velocity,
run-out length), preservation (bypass, erosion), and reworking (biological, physical).

Cretaceous and Tertiary outcrops in the Mesa San Carlos area expose four different thin-bedded sandstone types (TBS). This study
presents a matrix of the most important attributes used to recognize them: (1) hyperpycnite successions (4-15m thick) are interbedded
with slope mudstone deposits that together form tabular (85m thick; >1km wide) successions, with sandstone channels and scours
common at the base and mass transport deposits present at the top, (2) Wedge-shaped TBS turbidites that flank and confine multistory
channelbelts up to 90m thick that thin and pinch out within 500m of interdigitated but stacked conglomerate channels, (3) TBS turbidites
separating channel bodies form 25m-thick and 230m-wide preserved remnants, and (4) TBS contourites comprising <3m wide sandstone
lenses amalgamated laterally to form tabular bedsets. Paleocurrent indicators change from unidirectional offshore during hyperpycnal
flow to slope parallel flow during waning energy conditions of this mudstone-rich cycle.

Turbidite and hyperpycnite deposition respond to external controls, whereas contourites are reflecting internal controls in the slope
system. Failure-initiated flows dominate the deposition in the third-order growth phase and flood-initiated flows dominate in the third-
order initiation and retreat phases. Bottom current rework is the main internal process that affects deposits in the initiation and retreat
phases. In the growth phase, the internal processes are more variable. They are controlled by overspilling and superelevation of the flows.
Channel and scour bodies deposited by hyperpycnal flows show downstream and vertical changes in grain size, primary sedimentary
structures, bed thickness, and sedimentation units that allow recognition of an energy matrix recording variations of the flow magnitude.

Copyright © AAPG. Serial rights given by author. For all other rights contact author directly.
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How do we evaluate the origin TBS deposits?
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Diagram showing the methodology to measure the vertical thickness
for facies and sedimentation units of TBS
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Sedimentology
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Hypothesis

Dominant Flow
Process

Flow Response
Sedimentology
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Possible Sedimentary
Bodies

14+2= Sedimentation Regions

I. Flow Behavior
and Evolution.

A. Velocity

B. Run-out length

I1. Flow Initiation.
A. Failure
B. Flood

I11. Reworking.
A. Biological
B. Physical

IV. Preservation.
A. Bypass
B. Erosion

[. Turbidites (Overbank)
A. Proximal
B. Distal

II. Turbidites (Levee).
A. Proximal
B. Distal

[11. Contourites.
A. Sandstone-rich,
high bioturbated
B. Mudstone-rich,
low bioturbated

IV. Hyperpycnites.
A. High-magnitude flood
B. Medium-magnitude flood
C. Low-magnitude flood

Levee-Overbank
Lobe

Scour

Channel
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E. Mudstone-rich thin-
bedded sandstones overlying
conglomerates

D. Thin-bedded sandstone
separating conglomeratic
channels

C. Thin-bedded sandstone
flanking and confining con-
glomeratic channels

B. Mudstone-rich thin-
bedded sandstone underlying
conglomerates

A. Sandstone-rich thin-
bedded sandstone underlying
conglomerates
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Sedimentary Bodies — Region A
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Attribute variations reflect processes

High-density turbiditic flows
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Sedimentary Bodies — Regions D & C
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Sedimentary Bodies — Regions B & E

LOBEFORMS: continuous and discontinuous tabular thin-bedded bedsets (NSC)
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Conclusions
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Flow Response
Sedimentology
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) Possible Sedimentary
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1+2= Sedimentation Regions

I. Flow Behavior
and Evolution
A. Velocity
B. Run-out length

II. Flow Initiation
A. Failure
B. Flood

[II. Reworking
A. Biological
B. Physical

IV. Preservation —1
A. Bypass
B. Erosion

[. Turbidites (Overbank)

Levee-Overbank

A. Proximal
B. Distal

II. Turbidites (Levee)
A. Proximal
B. Distal

III Contourites
A. Sandstone-rich,
high bioturbated
B. Mudstone-rich,

low bioturbated

Lobe
Scour
Channel

—  [evee
Lobe
Scour

E. Mudstone-rich thin-
bedded sandstones overlying
conglomerates

D. Thin-bedded sandstone
separating conglomeratic
channels

C. Thin-bedded sandstone

Channel

Channel
Levee
Lobe
Scour

Channel

\ I'V. Hyperpycnites
A. High-magnitude flood
B. Medium-magnitude flood
C. Low-magnitude flood

Levee
Lobe
Scour

flanking and confining con-
glomeratic channels

— B. Mudstone-rich thin-
bedded sandstones underly-
ing conglomerates

A. Sandstone-rich thin-
bedded sandstone underlying
conglomerates
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Sedimentary and stratigraphic attributes for recognition of the different types of
thin-bedded sandstones and their relation to the different sedimentation regions

A. Sandstone-rich

c
sandstone succes-

Thin-bedded

D. Thin-bedded
sandstone succes-

Sedimentation - B &E. Mudstone-rich thin- s ; ) :
Regian T.hln—bcdded‘t_samdslonc S ey sions ﬂ anking and| sions separati ng
successions. confining conglom-| conglomeratic
eratic channels channels
Dominant Rock Type Hyperpycnite Contourite Turbidite
High-magnitude| Medium-magnitude | Low-magnitude
Rock SubType flood flood flood
Hyperpyenite Hyperpyenite Hyperpyenite

Grain Size, Texture,
Sorting

Uniform grain
size. mainly
fine sand

Upper very fine
to lower fine

Upper very fine
to silt

Upper very fine
to silt

Lower medium to
upper very fine and

upper very fine

Granule to
lower very fine

Common Facies

and lower fine

[chnofacies

Ienofacies Nereites and Zoophyveos are characteristic at the top of the
convoluted sandstone facies. Traces are horizontal, sandstone-filled, and
abundant and have low diversity, indicating substrate and nutrient con-
trols on distribution in a partly muddy seafloor. Preservation of pre- and
post-event traces within the sedimentation units indicates longer flow
durations and gradual changes in flow behaviour. Common ichnotaxa
include: Nereites, Palacophyveos, Phycosiphon, and Psilonichnus. Pres-
ervation of graphogliptids reflect atypical sedimentation conditions that
can be related to waxing and waning flow behaviour.

High abundance of traces. with Phvcosipho
Zaophyeas, and Chondrites being the mao
typical forms. The traces are mainly filled
with mudstone. but sandstone-filed traces are
also present. Mainly pre-event traces are pre-
serve indicating the presevation of elements
from different moments in time, faunal climax
at marine depths, and high variability in flow
conditions.

Most diverse suite of ich-
nofacies: Nereites.
Skolithos, Zoophyveos, and
Cruziana, and abundance
of post-event traces indi-
cating high-energy stages.
However, pre-event lraces
increase at channel-distal
positions indicating lower

enerey conditions

Low bioturbation. with
Skolithos and Cruziana
being characteristic, main-
ly sand-filled post-event
traces, with a high propor-
tion of traces cross-cutting
beds thicker than 10cm.

Common Sedimentary
Structures

Chmbmg nipple,
wavy and planar par-
allel lamination

Planar parallel lami-
nated silty sandstone

Wavy, convolute and pla-
nar parallel lamination

Ripple and wavy laminated, highly
bioturbated sandstone

Planar parallel and wavy
lamination

Structureless and
plane parallel lamination

Sedimentation

P

0.25m

e
Not present. e kT kI BGE
facies in close

association with

Units E hyerpyenites sedi-
. mentation units.
Sediment n=76
Transport gl
Indicator
Common e . 5__
Sedimentary [ - il ————

Body Type

Increasing
Frequency




Sedimentary and stratigraphic attributes for recognition of the different types of
thin-bedded sandstones and their relation to the different sedimentation regions

Sedimentary
Bodiy

Common Facies
within sedimentary bodies

Vertical Sandstone

Bed Thickness

Vertical Thickness
Distributions

Facies
Associations

Stratigraphic
Position

Sedimentation
Region

- Upward thickening and coarsing of sandstone bedsets with silty mudstone nterbeds.

v Power-law These successions are up to 5 meters thick and their top is usually marked by convo-
lute and wavy laminated sandstones that weather red.
- Thickening and coarsing up successions. They are mainly filled by ripple cross or D. Thin-bedded
v Log-normal plane parallel laminated sandstone and silty mudstone. Sandstone facies dominate. Fifth-order sandstone suc-
Commonly isolated or multistory scours. cycles 5.11 to cessions sepa-
: . 5.14 rating conglom-
- Successions thicken and thin upwards. Grain size vary from lower fine to very fine. eratic channels
’ Exponential Shear and traction structures in the sandstone facies are typical, silty mudstone com-
monly cap the succession.
- Upward thickening and coarsing of sandstone bedscts with silty mudstone interbeds
Power-law These successions are up to 10 meters thick and their tops are usually marked by
v wavy or ripple laminated sandstones.
- Thickening and coarsing up successions. Mainly filled by plane parallel or structure- C Thm_hcd,de‘d
Lug.normal i 4 & sandstone suc-
v less sandstone and silty mudstone. Sandstone facies dominate. Commonly isolated or Fifth-order cessions flanking
multistory scours. cycles 5.13 to and confining
: s 3 s H13 conglomeratic
- Successions thicken and thin upwards and grain size of the sandstone beds show channels
’ variations from lower very fine to upper very fine. Traction structures in the sand-
‘ Exponential ; ¥ i
stone facies dominate, burrowed sandstone are common. and silty mudstone com-
monly cap the succession.
v Log-normal - Thickening and coarsing up successions. They are mainly filled by ripple or wavy
laminated sandstone and silty mudstone. Commonly isolated scours.
Fifth-order B & E. Mud-
- Less than 3 meters wide sandstone lenses that do not amalgamate laterally. These dim 5.8 lcydes ) stone-rich thin-
: ! oK 1 e 5810 5.10 and bedded succes-
A X sedimentary bodies are characteristic at the top of the continuous lobeform tabular = 5170 5.19 it
Exponential successions. Typically filled by burrowed sandstone. wavy laminated sandstone and — 3m ’
silty mudstone. ==
W W W - Thickening and coarsing up successions. They are mainly filled by burrowed sand- ———126m
W W W v . stone, and wavy, ripple cross laminated sandstone and muddy siltstone mudstone. —
. AN ——— Exponential Sedimentation units vary depending on the type of scour and their position in the =H05m
Eai 37‘? stratigraphic profile (Fig 46). Multilateral. multistory and isolated types are present. o
‘ ‘ Log-normal - These su_ccessions thicken zu}d thin up\_\‘ards, _Fine to very fine grain size. Traction = -
structures in the sandstone facies are typical, silty mudstone commonly cap the suc- A7
cession. A. Sandstone-rich
- 50m Fifth-order thin-bedded sand-
; 2 4 2 ; . y g cycles 5.6 to 5.7 | stone successions.
- Upward thickening and coarsing of sandstone bedsets with muddy siltstone or lami- —==57m
v Power-law nated silty mudstone interbeds,
——Fc)
- Thin-bedded rippled. wavy and plane parallel laminated sandstones that thin and -
— . Log-normal fine upward and are capped by convolute sandstones and silty mudstone deposits. ]

They interbed to form up to Sm thick successions.
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