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Abstract

The lack of stratigraphical markers and microfossils in continental, fluvial, low net-to-gross red-bed sequences, make conventional e-
log based interwell correlations particularly challenging. Effective reservoir modeling and development of such reservoirs therefore
rely on application of sedimentological concepts that set the basis for a robust correlation framework. This paper presents a case study
located offshore UK, where the sedimentary characteristics and reservoir architecture of a fluvial reservoir were re-evaluated by
applying a multidisciplinary approach including pedofacies analysis and chemostratigraphy. This study developed an independent
chronostratigraphic framework based on chemostratigraphy related primarily to a careful description and interpretation of “non-
reservoir” facies. The innovative use of shear sonic to detect palaeosols in uncored sections was also used for modeling channel
distribution. This approach ultimately allowed the identification of meaningful stratigraphic units characterised by changes in the
sequence of vertical stacking of pedofacies types. The latter were interpreted as the result of different depositional environments,
hence reservoir architecture and connectivity.

The application of the pedofacies concept, the use of shear logs, associated with heavy-mineral analysis, allowed an independent
validation of the chemostratigraphic correlation scheme, and provided a framework for more sophisticated reservoir modeling. In
particular, the recognition of the overall style of fluvial behaviour that may influence the style of channel sand-body stacking provided
a predictive model to assess reservoir lateral and vertical connectivity. Also, indication of proximity to channel belts enabled
identification of stratigraphical which are likely to be laterally connected to channels not penetrated in the wellbore.

Copyright © AAPG. Serial rights given by author. For all other rights contact author directly.
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Challenges of distal fluvial systems

12800 .|

Distal fluvial sandstone associated with red-beds/barren

sedimentary successions are common HC-bearing

reservoirs worldwide (e.g. Unaizah Fm, Gharif Fm, TAGI,
Bunter Sst FM, Silverpit Fm, etc.)
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Understanding reservoir architecture and sand
connectivity is key to establish effective predictive models

13300 -

Correlation is challenging because of the difficulty to

apply common chronostratigraphic methods (e.g. biostrat) =-

Even more complicate in endoreic basins where the fluvial

system is located away from sea/lacustrine flooding.
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= The Barren Red Measures Group:
m Palaeogeography, Stratigraphy, Climate and Tectonic
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Palaeogeography — Westphalian C

Mid North
Sea High

N

Silver Pit
Basin

Variscan front =%

Barren Red Measures
Group

*Upper Carboniferous
continental fluvial system

*Variscan foreland basin
*Southern Margin of the

foreland bulge (Mid North
Sea High)
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Stratigraphy, Climate and Tectonic
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Study area Location
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The Ketch Formation M

m Correlation Methods for a Subsurface Formation

= Seismic: very deep and below salt

= Biostratigraphy: barren

= Magneto-stratigraphy: too short time of deposition

= Tuff layers (tephra): no volcanic activity

= Vertebrate taphonomy: no too many around

= Coals: absent

= Litho-stratigraphy: vertical packages based on wireline logs and
extrapolated laterally (distinct N:G intervals)

= Sequence stratigraphy ?
= Palaeosolls ?
= Chemo-stratigraphy ?
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Reservoir Sedimentology - Facies @

Based on sedimentological core analysis and wireline log.

Facies Composite channels
Single channels
Proximal crevasse splay
Fine-grained lacustrine and overbank deposits
Sols

Grain-size Gravel 10-15%
Coarse to medium sand 35-40%
Fine sand 20-30%
Silt 30-40%
Clay 5 -10%

N:G 30 %
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Reservolir facies

KEY PHYSICAL @
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Non-Reservolir facies
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2 - Flood Plain

Bedded very fine grained
sandstone with interbedded

silt-claystone

Fining upward trend

Ripple-cross and planar

lamination

Massive very fine sandstone

with soft sedimentary
deformation

Haematitic reddish/brown

silt/claystone with

rootlet/plant remains and

pedogenic fabric

Pedogenic/mottled/churned
clay/peds rich/siltstone with

calcretes

Proximal overbank
deposits.

Sheetfloods, crevasse
splays with interbedded
floodplain deposits

Interfluvial/flood plain
deposits relatively well
drained

Palaesois
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Conceptual Geological model M

Depositional environment
of the Barren Red “
Measures - Upper Inland source area

Carboniferous SNS

Large interfluves with
well layered mud,
siltstone and ephemeral

Low sinuosity, lacustrine deposits.
sandy, braided river
belts




Model 1: Litho-stratigraphic correlation across M
the Schooner Field (flattened at Ketch Formation base)
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Model 1: Sequence stratigraphy approach

Unit C: Finer sediments indicating
- increased rates of BL rise. Great
i g floodplain storage of accommodation

N ALL DEPTHS TVOSS 1)
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Unit A: Aggradation at early base
level rise and valley infill caused
by backstepping

Figure 2.7: Reservoir Correlation across Schooner Field Showing Interpreted
Interconnectivity of Composite Channel Sandbodies (Lithofacies
Association FA1).

1996 model: width range: 250-4000 m; T:W range: 1:9 - 1:500
Slide 16



Field Production Performance | -
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Model 2. Chemo-stratigraphic correlation across
Schooner Field (flattened at Ketch Formation base )
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Challenge M

= Reservoir performance, connected HC, doesn’t seem to
honour the 15t correlation and related geological
conceptual model.

= The new, 2"d correlation and associated reservoir

connectivity, might be right but is largely inconsistent with
15t geological model.

= How can we ensure the new correlation is right ?

mNO alternatives: Back to the rocks and give a
better look also at the non-reservoir intervals.
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. 20
Trav NO.10  TmAvwo.11  JRAY,NO.1e  TRAV NO.2
IDP 13307 TOP 13310

Pedofacies types

Type 1

Primary sedimentary structures
(bedding, soft sed. deformation,
etc..) preserved, no (or very rare)
occurrence of bioturbation and/or
rootlets. Some hematite nodules
occur.

Interpretation: high
sedimentation rate and high
aggradation; channel or
frequently feed alluvial plain

Type 2

Primary sedimentary structures are
preserved but can be locally
disturbed by bioturbation or
rootlets which make up 10-20 %
of the fabric.

Interpretation: moderate
aggradation sediments




TOP 13331

BOT 13334

TOP 13334

BOT 13337

TOP 13337

BOT 13340

°

TOP 13340

BOT 13343

TUF 133583

BOT 13346

BOT 13349

Pedofacies types

Type 3

Rare preservation of primary
sedimentary structure up to 30-50%b of
fabric disturbed by bioturbation and
rootlets.

Interpretation: low aggradation
sediments

Type 4

No primary structure preserved, original
fabric completely churned up, heavy
bioturbaion, ferriginous features
(pisolites) and siderite nodules, salt
(barite ?), pedorelicts.

Interpretation: mature paleosoil,
(ultisol, tropical podzol, calcrete)
intense redox and illuviation processes,
wet/dry cycles very low or absent
aggradation rate (long sub-aerial
exposure).




Pedofacies at the microscope

; Phidls B :
Pedofacies 1: Undisturbed lamination picked out by aligned Pedofacies 2-3: Anisotropic, parallel alignment of clay
mica and hematite-rich clay minerals, also with a parallel extinction pattern; grain coatings

present (arrowed)

Pedofacies 4: Multiple-stress cutans
and Opaque clay filled fine brecciation
cracking, developing through soil fabric from
larger cracks

Pedofacies 3: Cluster of opaque nodules showing
separation from the groundmass (outlines around
grains); stress cutans also present

Increased evidence of clay movement, the presence of better developed soil
fabrics and an intimation of the existence of a soil structure in pedofacies 4



Pedofacies distribution on the Upper M
Carboniferous alluvial plain: Ketch Formation

Pedofacies 4 Pedofacies 3 Pedofacies 2 Pedofacies 1

o
ﬂ\ levee channel
& . \
|/ D
ﬁ AN w8 A ) \
[ 2 INCAS o N 225208 S e o - AZ- A eSS

& C water table

distal floodplain proximal floodplain

Pedofacies models: M. Kraus et al...
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Pedofacies stratigraphy
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Recognition of Pedofacies

wells

In uncored M
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Pedofacies type

1 2 3 4

Correlation between
shear sonic log and
pedofacies from core
data.

Pedofacies 1 (i.e. non-
pedogenised facies) to 4
(strongly pedogenised
facies) indicate high and
low sedimentary
aggradation, respectively.
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Reservoir anatomy
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vertical and lateral
distribution
Well G
o well E-¥ "\
) —_—c1
e
- ! K
Pedofacies/ Unitas — |
aggradation Well A Well G
relationshi Pl
P :7{4—%%?&
1: high e — —
2: moderate TTEEER pa
3: low
4: very low |:| channel - palaeosol |:| glc;ci)g

Upper
Ketch Fm

Lower
Ketch Fm

(Moscariello, 2003)

Example of lateral correlation and pedofacies distribution for 2 wells
in the Silver Pit Basin (Barren Red Measures, Westphalian C)




Impact on Reservoir Prediction - M
Sequence Stratigraphy
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base level, wetness
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Sequence stratigraphy M

Relative change in

old model baifn'jfv'gﬁ”ae;{‘eess new model
Fluvial architecture reeommonaen Fluvial architecture

Foreland subsidence

Lithostratigraphy Chemostratigraphy & Pedofacies
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Impact on Reservoir Modeling and Field
Performance Prediction e,

Single Channels
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Outline @

m Conclusions & Learnings
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Conclusions @

= Flood plain composition and vertical evolution in low
N:G systems are intimately linked to channel sand
distribution and reservoir architecture

= Use of multiple and independent approaches (N:G
distribution, pedofacies, chemostratigraphy) allowed us
to:
mdefine an alternative evolutionary model of the sedimentary basin
which resulted to be more consistent with the regional tectonic

evolution of the basin (sequence stratigraphy approach helps but
Is correlation driven !!)

mbetter constrain the static and dynamic model by using
appropriate analogue data (i.e. reservoir performance prediction).
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Learnings M

. Limitation of using lithostratigraphic subdivision based
on wireline log in isolation.

. Shear sonic together with GR can be successfully utilised
to identify pedofacies vertical patterns in uncored wells.

. Chemostratigraphy can be efficiently used as a tool to
assist definition of a reliable correlation framework,
hence connectivity.

. Importance of palaeosoils/pedofacies in characterising
internal reservoir architecture in low N:G, barren fluvial
reservoirs also in the subsurface.
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