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Abstract 
 
This article suggests that lowstand fluvial profiles represent the first-order morphodynamic state for continental shelves, and river long 
profiles are graded to shelf margins. Over the last 106 yrs mean sea level has been -60 to 65 m, with a mode at -85 to -90: for most of 
this time, the majority of shelves would have been subaerial. Long profiles for river systems have equilibrium times > 104 to 105 yrs: 
they should be adjusted to mean states over time scales that are ≥ equilibrium times, and insensitive to the anomalous and infrequent 
highstands. On a global scale, shelf gradients and widths correlate to onshore fluvial gradients and drainage areas.  
 
In an icehouse world, high-frequency climate changes are coupled to changes in ice volume, and unsteadiness of sediment supply due 
to climate change is modulated by the transit of river mouths across the shelf. Moreover, the transit of river mouths across a broad 
shelf results in the merger of river systems that discharge separately to the coastal oceans during highstand: merging of drainage 
basins increases the magnitude of individual point-source sediment supply, but there will be fewer river mouths and delta systems at 
the shelf margin than there are during highstand time. These relationships should be fundamentally different in a Greenhouse world: 
high frequency, long distance transit of river mouths and deltas, and merger of drainage basins should not occur to the same degree.  
 
In an Icehouse world, then, major high-frequency (time scales < 106 yrs) changes in fluvial-deltaic, shelf-margin, slope, and basin-
floor stratal packages will reflect fluvial responses to sea-level change. In a Greenhouse world, high-frequency stratigraphic packaging 
should be closely coupled to unsteadiness in sediment supply due to climate change, rather than modulated by fluvial transit of the 
shelf, and merging of drainages.  

Copyright © AAPG. Serial rights given by author.  For all other rights contact author directly.



CONTINENTAL SHELVES ASCONTINENTAL SHELVES AS
THE LOWSTAND FLUVIAL THE LOWSTAND FLUVIAL 

LONG PROFILELONG PROFILELONG PROFILELONG PROFILE
And Some Possible Implications for Icehouse vs. And Some Possible Implications for Icehouse vs. pp

Greenhouse Greenhouse StratigraphicStratigraphic RecordsRecords

Mik BlMik BlMike BlumMike Blum
Department of Geology and GeophysicsDepartment of Geology and Geophysics

Louisiana State UniversityLouisiana State Universityyy
Baton Rouge, LouisianaBaton Rouge, Louisiana



GENERAL SHELF TYPESGENERAL SHELF TYPESGENERAL SHELF TYPESGENERAL SHELF TYPES

after after HeckelHeckel, 1972; , 1972; NittrouerNittrouer and Wright, 1994 (courtesy of J. and Wright, 1994 (courtesy of J. SuterSuter))



A) Process classification of continental shelvesA)  Process classification of continental shelves, 
depending on the relative balance of “fair-weather” 
processes (oceanic currents, tides, and waves) 
with storms.
Numbers refer to shelf regions discussed in this 

i ( ft J h d B ld i 1996)review (after Johnson and Baldwin, 1996). 
A) A simplified version of the conceptual shelf 

process classification, which recognizes the similar 
depositional effects of tides and semi-permanent 
oceanic currents as one apex of the triangle (after g (
Johnson and Baldwin, 1996; Galloway and 
Hobday, 1996). Numbers refer to shelf areas 
illustrated or discussed in this review.



TOPICS OF DISCUSSIONTOPICS OF DISCUSSION
•• constructional clastic shelves as the “continental constructional clastic shelves as the “continental 

terrace”terrace”

•• equilibrium times and mean seaequilibrium times and mean sea--level positionslevel positions

•• “graded” river long profiles and the shelf margin“graded” river long profiles and the shelf margin

•• unsteady vs. steady sediment supplyunsteady vs. steady sediment supply

i d i f d i d i h lfi d i f d i d i h lf•• merging and unmerging of drainages during shelf merging and unmerging of drainages during shelf 
transittransit

•• speculations on “icehouse” vs. “greenhouse” worldsspeculations on “icehouse” vs. “greenhouse” worlds



THE “STAGING AREA” CONCEPTTHE “STAGING AREA” CONCEPT

after Posamentier and Kolla, 2003

What are the sourceWhat are the source--toto--sink processes and scaling relationships sink processes and scaling relationships 
that control sediment dispersal to the shelf margin?that control sediment dispersal to the shelf margin?



SHELF AS THE CONTINENTAL TERRACESHELF AS THE CONTINENTAL TERRACE
from Curray’s Work on the Coast of Nayaritfrom Curray’s Work on the Coast of Nayaritfrom Curray s Work on the Coast of Nayaritfrom Curray s Work on the Coast of Nayarit

•• recognized that shelves were constructional, and represented repeated fluvialrecognized that shelves were constructional, and represented repeated fluvial--
d lt i d ti d id lt i d ti d i l l f ll d l t dl l f ll d l t ddeltaic progradation during seadeltaic progradation during sea--level fall and lowstandlevel fall and lowstand

•• recognized coincidence between shelf margin depth and widely inferred recognized coincidence between shelf margin depth and widely inferred 
Pleistocene lowstand sea levels of ~ Pleistocene lowstand sea levels of ~ --120 to 120 to --130 m130 m after Curray and Moore (1964)
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SHELVES AS THE DOWNDIP EXTENSION OF 
THE FLUVIAL LONG PROFILE?
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- passive margin shelf widths are usually >> 50 km 
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SOURCESOURCE--TOTO--SINK LONG PROFILE MODELSINK LONG PROFILE MODEL

TO WHAT ARE RIVER SYSTEMS GRADED?



EQUILIBRIUM RESPONSE TIMES
Diffusion-Based Characteristic Response Times

where: T = response time (yrs)

p
For Major Landscape/Seascape Features

where:         Teq =  response time (yrs)
L  =  length of system (km)
k  =  diffusivity = Qs/WTeq = L

k Qs = sediment flux (MT/yr)
W = channel or 

floodplain width (m)

k

 Response times for long profiles of most river systems along 
constructional margins commonly exceed ~100-200 kyrs

 Long profiles for major river systems are therefore likely “graded” to 
mean conditions over time periods that equal or exceed characteristic 
response times!!  Over shorter time scales, response decays with 
distance L = Tk 0.5

from Paola (2000)from Paola (2000)



EQUILIBRIUM RESPONSE TIMES
Diffusion-Based Characteristic Response Times
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LONG PROFILE OF LOWER COLORADOLONG PROFILE OF LOWER COLORADO
RIVER SHELF AND SLOPE (TEXAS)RIVER SHELF AND SLOPE (TEXAS)RIVER, SHELF, AND SLOPE (TEXAS)RIVER, SHELF, AND SLOPE (TEXAS)
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MISSISSIPPI VALLEY AND DELTA MARGINMISSISSIPPI VALLEY AND DELTA MARGIN
Topography and BathymetryTopography and Bathymetry
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MISSISSIPPI VALLEY AND DELTA MARGINMISSISSIPPI VALLEY AND DELTA MARGIN
Topography and BathymetryTopography and Bathymetry

A’
MackenzieMackenzieAA

A’A’

A’

A

DeltaDelta

A A’transgressive and

0

m
)

A Atransgressive and
highstand strata

shelf
margin

-100

E
le

va
tio

n 
(m

bedrock to
alluvial

transition

lowstand river
profile from
subsurface

mapping

SL

margin

Distance (km)
0 200 400 600 800 1000

-200



MENDOCINO TRIPLE JUNCTION: EEL RIVERMENDOCINO TRIPLE JUNCTION: EEL RIVER
Topography and BathymetryTopography and Bathymetry
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MENDOCINO TRIPLE JUNCTION: EEL RIVERMENDOCINO TRIPLE JUNCTION: EEL RIVER
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SOURCESOURCE--TOTO--SINK LONG PROFILE MODELSSINK LONG PROFILE MODELS
PASSIVE MARGINPASSIVE MARGINPASSIVE MARGINPASSIVE MARGIN

ACTIVE MARGINACTIVE MARGIN

•• the shelf is an extension of the the shelf is an extension of the 
d d fl i l fil d id d fl i l fil d igraded fluvial profile, and river graded fluvial profile, and river 

long profiles are graded to shelf long profiles are graded to shelf 
margin seamargin sea--level positionslevel positions



SHELVES AS THE DOWNDIP EXTENSION OF 
THE FLUVIAL LONG PROFILE?

•• “Flint Law” (S =“Flint Law” (S = --kAkAyy):): an inverse power law relationship betweenan inverse power law relationship between•• Flint Law  (S = Flint Law  (S = --kAkAyy):): an inverse power law relationship between an inverse power law relationship between 
drainage area (A) and channel gradient (S)drainage area (A) and channel gradient (S)

•• applies within (moving downstream) or between drainage basinsapplies within (moving downstream) or between drainage basins



SHELVES AS THE DOWNDIP EXTENSION OF 
THE FLUVIAL LONG PROFILE?

• All continents except Antarctica
• Temperate and tropical latitudes
• n = 125

y = 0.83 x0.38        r2 = 0.53

•• All shelf margins reside at similar depths hence primaryAll shelf margins reside at similar depths hence primary
areas from Syvitski and Milliman (2007)

•• All shelf margins reside at similar depths, hence primary All shelf margins reside at similar depths, hence primary 
morphometric difference is shelf widthmorphometric difference is shelf width

•• Shelf width and gradient scales to fluvial drainage basin areaShelf width and gradient scales to fluvial drainage basin area



SCALING OF SHELF WIDTH AND GRADIENT SCALING OF SHELF WIDTH AND GRADIENT 
TO HINTERLAND DRAINAGE BASIN AREATO HINTERLAND DRAINAGE BASIN AREATO HINTERLAND DRAINAGE BASIN AREATO HINTERLAND DRAINAGE BASIN AREA

The Icehouse World The Icehouse World ---- High Amplitude,High Amplitude,
High Frequency SeaHigh Frequency Sea--Level ChangeLevel Change



SCALING OF SHELF WIDTH AND GRADIENT SCALING OF SHELF WIDTH AND GRADIENT 
TO HINTERLAND DRAINAGE BASIN AREATO HINTERLAND DRAINAGE BASIN AREATO HINTERLAND DRAINAGE BASIN AREATO HINTERLAND DRAINAGE BASIN AREA

The Greenhouse World The Greenhouse World ---- Very Low Amplitude,Very Low Amplitude,
Low Frequency SeaLow Frequency Sea--Level ChangeLevel Change



SOURCESOURCE--TOTO--SINK LONG PROFILE MODELSINK LONG PROFILE MODEL

WHAT ABOUT SEDIMENT SUPPLY AND ROUTING?



FLUVIAL SEDIMENT SUPPLY FLUVIAL SEDIMENT SUPPLY 
Tectonics vs Climate ChangeTectonics vs Climate ChangeTectonics vs. Climate ChangeTectonics vs. Climate Change

~30%~30%

~30%~30%



PRESENT HIGHSTAND BOUNDARY CONDITIONS
Highstand Drainage Basins
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LAST GLACIAL MAXIMUM BOUNDARY CONDITIONS
Lowstand Drainage Basins
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FIRST DRAFT HIGHSTAND SEDIMENT BUDGET:
Colorado and Brazos Rivers, Texas



FIRST DRAFT LOWSTAND SEDIMENT BUDGET:
Colorado and Brazos Rivers, Texas

d b 25d b 25 30%30%qqss decreases by ~25decreases by ~25--30%30%



RIVER LONG PROFILES, SHELVES, AND SEDIMENTRIVER LONG PROFILES, SHELVES, AND SEDIMENT
DISPERSAL:DISPERSAL: ICEHOUSE WORLDICEHOUSE WORLD
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RIVER LONG PROFILES, SHELVES, AND SEDIMENTRIVER LONG PROFILES, SHELVES, AND SEDIMENT
DISPERSAL:DISPERSAL: GREENHOUSE WORLDGREENHOUSE WORLD
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A) Process classification of continental shelvesA)  Process classification of continental shelves, 
depending on the relative balance of “fair-weather” 
processes (oceanic currents, tides, and waves) 
with storms.
Numbers refer to shelf regions discussed in this 

i ( ft J h d B ld i 1996)review (after Johnson and Baldwin, 1996). 
A) A simplified version of the conceptual shelf 

process classification, which recognizes the similar 
depositional effects of tides and semi-permanent 
oceanic currents as one apex of the triangle (after g (
Johnson and Baldwin, 1996; Galloway and 
Hobday, 1996). Numbers refer to shelf areas 
illustrated or discussed in this review.
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