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Abstract 
 
Field data and recent experimental studies independently question long-held paradigms regarding the origin and time significance of 
fluvially carved sequence boundaries as well as genetic relationships between these surfaces and the strata they bind. These field data 
derive from an updip to downdip transect through the Cretaceous Dakota Group of the U.S. southern High Plains. The experimental 
data derive from repeated basin-scale runs of sequence development during relative sea-level change simulated in the Jurassic Tank at 
the University of Minnesota, St Anthony Falls. Both experimental and field data show that fluvial sand above sequence boundaries are 
deposited coexistent with the carving of the underlying sequence boundary. The field data do this by inference from mapped cross-
cutting relationships within observed stratigraphy and the experimental data through scaled reproduction of the processes inferred and 
products observed from the field. Both sources converge to reinforce assertions regarding sequence boundaries that require 
readjustment of some commonly held views. Namely, surfaces commonly mapped as sequence-bounding unconformities were not 
necessarily synchronously exposed, record no common age, and may not consistently separate older from younger strata. Also, fluvial 
strata above sequence boundaries do not necessarily reflect passive burial of these surfaces during subsequent transgression. Instead 
these strata may record co-generation of fluvial reservoir architecture and the underlying sequence-boundary over the full duration of 
the transgressive/regressive cycle because of close genetic links between the two. Furthermore, valley incision and sequence-boundary 
erosion need not reflect updip knickpoint migration from the shore;thus valleys and sequence-boundary continuity may commonly be 
lost down depositional dip. 
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Fluvial Response to Base Level Change 
and Generation of Sequences
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Some Common Assumptions

Progressive Stacking in Sheets during Filling
with little Valley Modification

Stratigraphic Valley = Topographic Valley

Somewhat Synchronous Sequence Boundaries

Subaerial Lowstand Surface of Erosion

Incision during Falling Stage and Lowstand

Upstream and Lateral?



(Aalto et al. 2003) 
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http://www.friendsofsuncookriver.org/suncook_poster.pdf

http://www.geol.binghamton.edu/faculty/bridge/R&Pcomputersim.htm

John Bridge

(Bridge and Tye, 2000)
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Sea Level

Base Level Buffers and Buttresses

Determiners of “Graded” Profile Elevation
Sediment Influx/Transport Capacity =1  (eq. 1)

dz/dt + dqs/dx = 0  (eq. 2)
Where:

qs = Sediment Discharge= f(ω, substrate erodability)
Sediment Influx = qs delivered at xi = f (drainage basin)

Transport Capacity = qs that can be transported at xi

dz/dt = 0

Variables
z Profile elevation
x Stream distance
t Time
ω=γQwS
ω Stream Power
γ Specific Weight
Qw Water Discharge
S Slope

Buttress
(Sea Level, 
Cataract, 

Lake Level, etc.)

Preservation Space

Lower Buffer Profile
Transport Capacity = Max
Sediment Influx = Min
Uplift Rate = Min

Buffer Zone
Instantaneous 

Profile

Upper Buffer Profile
Transport Capacity = Min
Sediment Influx = Max
Uplift Rate = Max

Buffers
f(Qw)

(Holbrook et al., 2006)



Some Effects 
of Buttress 
Shift

Down-Profile Buttress Shift

Buttress Rise

Buttress Fall

(Holbrook et al., 2006)



Cretaceous Dakota Group, US Western Interior
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(Holbrook et al., 2006)



Mesa Rica Sandstone Architecture

Channel=Bed=10m

300km

(Holbrook, 2001)



Mesa Rica Sandstone Architecture

Channel=Bed=10m
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(Holbrook, 2001)



(Holbrook, 2001)



(Blum et al., 1994)

2500 BP to Modern
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Alluvial Sequences on Colorado River, 
Central Texas
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Implications for Sequence 
Boundaries, Sequence 
Architecture, and Sequence 
Construction



v1 v2 v3 v4

Mesa Rica

(Wellner and Bartek, 2003)

Sequence boundaries as time surfaces?

Composite Surface



v1 v2 v3 v4

Mesa Rica

(Wellner and Bartek, 2003)

Sequence boundaries as time surfaces?

Composite Surface
LST

HST

TST

FSST

(Strong and Paola, 2008)

Sequence boundary 
formed over 75% of 
the entire sea level 

cycle!!!



Sequence Boundaries as Topographic Surfaces?

Sequence Boundary

(Holbrook, 1996)



Sequence Boundaries as Topographic Surfaces?

Sequence Boundary(Strong and Paola, 2008)

Sequence boundary shaped throughout the T/R cycle

Valley fill



Sequence Boundaries as Unconformities?

(Strong and Paola, 2008)
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Valley Incision by Knickpoint or Buffer?

Down-Profile Buttress Shift

Knickpoint Valleys

Buffer Valleys
Buffer Valleys

(Strong and Paola, 2008)

Henry Posamentier



Implications for Rapid Flooding

(Holbrook and Wright Dunbar, 1992)

(Holbrook, 1996)



Implications for Rapid Flooding

(Holbrook and Wright Dunbar, 1992)

(Holbrook, 1996)

(Oboh Ikuenobe et al., 2008)



Conclusions
1) “Sequence boundaries” are time-transgressive composite 

surfaces formed over the duration of the T/R cycle…therefore…
2) “Sequence boundaries” rarely equate to topographic surfaces

3) “Sequence Boundaries” are not always unconformities

4) Valley erosion can initiate either in the proximal or distal region 
of the basin …Buffer vs. Knickpoint valleys

5) Sand sheets above “sequence boundaries” are prone to rapid 
transgression
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