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Abstract

Physical sorption processes of hydrocarbon and non-hydrocarbon gases on coals and carbonaceous shales encounter increasing
interest in the context of unconventional gas exploration and subsurface storage (sequestration) of CO,.

During recent years experimental work has been performed in our laboratory to investigate sorption thermodynamics, kinetics,
selectivity and fractionation processes of methane and CO, on coals of different type and rank and on shales of various compositions.
Experiments have been conducted under high-pressure conditions (up to 25 MPa) at temperatures relevant for natural gas and coal
basins. These studies have provided a database suitable for the development of numerical models on gas migration and storage. They
have also revealed unexpected behaviour in terms of selectivity and relative sorption rates.

Generally, sorption and desorption of CO, to/from coals was found to proceed more rapidly than of methane. Although coals exhibit
larger excess sorption capacities for CO, than for methane, certain coals showed preferential sorption of methane in the low-pressure

range. Moisture content plays a crucial role in the sorption of gases on natural coals.

Selected results will be presented documenting the state of experimental work on gas sorption processes in sedimentary basins and
implications for unconventional gas exploration.

Copyright © AAPG. Serial rights given by author. For all other rights contact author directly.
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GAS SORPTION AND TRANSPORT IN COALS ANB?_ MH

Mechanisms & Processes Systems (low poro-perm end)
= sorption/desorption + coal

— capacity ~ CBM/ECBM

— kinetics - CO, storage

— selectivity * shales

— seal efficiency
* physical sorption

* mineral reactions
. transport processes

— tight gas / shale gas
— diffusion
— Darcy flow (compressible)
— capillary breakthrough drainage imbibition
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Road show of experimental work performed in our laboratory with selected
examples and varying focus of interest; combinations of processes depending on
experimental conditions of selected examples.

Portfolio of experimental techniques that can be combined in a very flexible way;
well-established understanding of processes (and open questions).
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« CO, excess sorption

» Selectivity (CH, vs. CO,)

« Sorption kinetics (CH, vs. CO,)
« Sorption on shales (CH, & CO,)
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CH, SORPTION: TEMPERATURE AND MOISTURE EFFECTSIINIINDL m
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« CO, excess sorption




High-pressure CO, sorption
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Fig 9. Excess sorption isotherms for CO; on dry Joppe-1 IV coal at 40, 60 and 80 “C.
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CO, SORPTION ISOTHERMS (COALS) - m
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co, SORPTION: EUROPEAN ROUND ROBIN(ENSINEIN m
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We teamed up with laboratories in Belgium and The Netherlands for inter-
laboratory comparison on selected samples (activated carbon and natural coals).

Our aim: improve overall quality of high-pressure CO, sorption measurements.




€O, HIGH-PRESSURE SORPTION, TEMPERATURE DEPENDENGERNN m
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. Selectivity (CH, vs. CO,)
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seLecTviTY: Binary wixTures: cojeryE R\NTH

Temperature: 45 °C
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Take-home message: different coals exhibit different selectivity with respect to CO,
and CH, sorption. Not yet clear what is the controlling factor.




SELECTIVITY: BINARY MIXTURES: Cozlc_ m
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When a coal is exposed to a gas mixture, selective sorption is likely to occur; this
will manifest itself in the composition of the free gas phase. An enrichment of the
gas phase in one component indicates the selective or preferential sorption of the
other compound. A series of measurements was performed in our lab on a variety of
coals.




» Sorption kinetics (CH, vs. CO,)
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Comparison of pressure decay curves for CH, and C0,
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SELECTED RESULTS - RWNTH

« Sorption in shales.(CI-.I; & CO,)
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METHANE SORPTION ON BARNETT SHAL_ m.
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CO, SORPTION ON MUDERONG SHALE (A_ m
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CO, SORPTION ON PURE CLAY MINERALS- m

mineral alteration effects due to exposure to CO,?!
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INTERACTION OF GASES WITH COALS AND CARBONACEOQOUS SHALES

« significant progress has been made in sorption research
« practically useful relationships are emerging
» research issues:
» high-pressure CO, isotherms
selectivity
sorption kinetics
physical sorption vs. mineral reactions (CO,)
relationship sorption - transport processes

24
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