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Abstract 
 
Research over the past 15 years have established that the Cretaceous subsidence history of the Rocky Mountain region reflects a 
complex temporal and spatial interplay of long-wavelength dynamic subsidence related to mantle flow above the subducting Farallon 
slab, intermediate-wavelength subsidence across the foreland basin of the Sevier orogenic belt and short-wavelength and spatially 
complex subsidence and uplift related to the Laramide orogeny. Combined, these driving forces have created a Cretaceous 
sedimentary wedge that extends eastward more than 1500 km from the orogenic belt, generally thins eastward, and can be subdivided 
into megasequences by regional unconformities that closely relate to tectonic episodes in the thrust belt. Individual megasequences 
range in duration from 5 to 7 million years.  
 
Superimposed on these regional tectonic drivers were global sea level fluctuations, which also imparted their signature on the 
stratigraphic architecture. Long-term global sea level rises and falls, now documented well in oxygen isotope data, are reflected in 
some major regressions and transgressions but appear to exert only a secondary role relative to temporal changes in regional 
subsidence rates. In contrast, sea level changes on the scale of Milankovitch cycles (104 to 106 years) are prominently expressed in 
the shallow and marginal marine strata.  
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Accommodation space in the Cretaceous 
basins of the U.S. Rocky Mountains were 
generated by:

 Much higher global sea levels than today, 
because of younger seafloor crust

 Long-wavelength and long-term dynamic 
subsidence above the subducting Farallon plate

 Short-wavelength and intermittent flexural loading 
by the Sevier fold-and-thrust belt 

 Very high-frequency eustatic sea level changes

The Points



R. D.  Muller et al., 2008 (c) AAAS used with permission
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Long Term Sea Level Histories
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Cenomanian Global Paleogeography



Web site of: Hans-Peter Bunge, Ludwig Maximilian University, Munich

The Recycled Remnants of the 
Farallon Plate Today



Dynamic Topography Above 
A Subducting Slab

Burgess and Moresi, 1999



Modeled Cross Section Across 
Southern Wyoming
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Burgess and Moresi, 1999

Rates of Change in 
Dynamic Subsidence
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Utah-Colorado Cross Section
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MS 10 – K/T boundary. Base Fort Union Fm.
MS 9 – Base Laramie Fm – 68.8 Ma
MS 8 – Base Sandstone Member A – 70.6 Ma
MS 7 – Terry SS - 75.1
MS 6 – Base Bluecastle Tongue - 77.0
MS 5 – Base Castlegate – 80.0 Ma
MS 4 – Upper Emery SS – 84.0 Ma
MS 3 – Lower Emery SS – 87.0 Ma 
MS 2 – Base Coon Springs SS - 92.7 
MS 1 – Base Dakota SS – 95.0 Ma

The Late Cretaceous 
Megasequence Boundaries



New Jersey Sea Level vs. 
Central Rockies

NJ data modified from Miller et al., 2005
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Accommodation space in the Cretaceous 
basins of the U.S. Rocky Mountains were
generated by:

 Much higher global sea levels than today because 
of younger seafloor crust

 Long-wavelength and long-term dynamic 
subsidence above the subducting Farallon plate

 Short-wavelength and intermittent flexural loading 
by the Sevier fold-and-thrust belt 

 These were punctuated by high-frequency sea 
level changes

Conclusions\Points
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