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Abstract 
 

Earth acquired essentially its entire carbon inventory very early. Most carbon arrived as volatile components trapped within planetesimals 
that formed the planet. As Earth approached its ultimate size, the greater energy associated with large impacts caused substantial amounts of 
volatiles to be lost to space. Because the redox state of the upper mantle has been relatively constant for at least the past 3.7 billion years, 
CO2 and CO3

-2species have dominated mantle carbon inventories since the early Archean. The cycling of carbon between its reservoirs in 
the atmosphere, ocean, crust, and mantle has responded to major long-term evolutionary trends; e.g., increasing solar luminosity, declining 
sizes and rates of impacts, declining radiogenic heat flow, and the stabilization of large continents. The major changes have occurred 
principally in the relative sizes of these carbon reservoirs and in the carbon fluxes that linked them. Today, rates of carbon exchange 
between the mantle and crust are slower (~10%) than global sedimentary carbon cycling which, in turn, is much slower (~0.1%) than global 
biological carbon cycling. The hotter Archean mantle must have influenced significantly the inventory of carbon in the crust, oceans, and 
atmosphere. Higher Archean rates of crustal production sustained higher mantle carbon outgassing rates. A hotter upper mantle retained any 
subducted carbon with greater difficulty. All of this indicates that the Archean crustal carbon inventory actually might have exceeded the 
modern crustal inventory. The enormous size of the mantle, together with more vigorous Archean mantle-crust exchange, probably allowed 
the mantle to control crustal volatile inventories and constrain the redox state of surface environments to a greater extent than it does today. 
This control weakened over time, following the decay of mantle radionuclides and declining heat flow. Also, the tectonic reworking of 
ancient crust during the Late Archean and Early Proterozoic led to more stable continents with more extensive stable shallow marine 
platforms that became major sites for the deposition and long-term preservation of carbonates and organic carbon. The rise of pervasive 
photosynthetic microbial communities transformed life into a major player in carbon cycling. Biological productivity enhanced sedimentary 
organic carbon burial rates; it contributed to the oxidation of the oceans and atmosphere, and ultimately it helped to modulate atmospheric 
CO2 levels.  
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Estimating the flux 
of mantle carbon 
to the surface
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0.06 x 1018 moles



Rare gas & nitrogen
abundance patterns
Earth & Mars match 
carbonaceous
chondrites more
closely than solar 
abundances
(Pepin, 1991;
Zahnle et al., 2007)

Earth accreted from
coalescing planetesimals
that had a broad range of

abundances of volatiles
(Zahnle et al., 2007) Time



Hadean Impacts, Volatiles and Temperature
Zahnle et al., 2007
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C subduction, Recent vs Archean (Des Marais, 1984)
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The C Cycle during the Archean and Proterozoic
• Mantle-crust exchange dominated the Archean

C cycles
– Substantial C fluxes and crustal reservoirs
– Redox control
– Global biological productivity
– Hydrogen escape to space 

• Proterozoic trends altered the C cycles
– Declining geothermal fluxes
– Increasing solar luminosity 
– Oxygenic photosynthesis 
– H escape to space 
– Continents and tectonics
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