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Abstract

There are three major Paleozoic basins in eastern Canada:
e Cambrian-Ordovician St. Lawrence shallow marine platform and coeval deep water facies
e Silurian-Devonian shallow to deep marine Gaspé Belt
e Devonian-Permian terrestrial to shallow marine Maritimes Basin

The sedimentary successions are bounded by tectonically-generated unconformities - the Taconian unconformity separating Cambrian-
Ordovician from Silurian-Devonian strata and the Acadian unconformity at the base of the late Devonian-Permian strata. Each basin contains
unique source rock and reservoir units and specific trap types. All of the basins contain producing or discovered hydrocarbon fields but there
has been no independent evaluation of their oil and gas resource potential.

Over the past five years the Geological Survey of Canada and its partners have acquired new hydrocarbon systems data, in preparation for a
first regional hydrocarbon play assessment of Paleozoic strata in eastern Canada. A total of 16 conventional and 2 unconventional plays have
been identified.

Seven conventional plays are recognized in Cambrian-Ordovician strata:
e Cambrian rift sandstones
e Lower Ordovician hydrothermal dolomite (HTD)
e carbonate thrust slices at the Appalachian structural front
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Middle-Upper Ordovician HTD
passive margin slope clastics
foreland sandstones and carbonates
Quaternary sands

Six conventional plays are recognized in the Silurian-Devonian strata:
e Lower Silurian sandstones

Lower Silurian HTD

Upper Silurian HTD reefs

lowermost Devonian HTD reefs

Lower Devonian fractured carbonates

Lower Devonian nearshore sandstones

Three conventional plays are recognized in Carboniferous strata:
e Lower Carboniferous sandstones
e Lower Carboniferous (Visean) carbonate reefs
e Upper Carboniferous sandstones and an unconventional coal bed methane play

Unconventional shale gas plays may occur in Cambro-Ordovician and/or Carboniferous strata.

Of the 16 conventional plays, 6 plays have enough production or exploration data to prepare quantitative estimates of resource potential:
e Lower Ordovician and Middle-Upper Ordovician HTD
e carbonate thrust slice
e Lower Devonian sandstone
e Lower and Upper Carboniferous sandstone

For each of the quantitative play assessments, we present play maps, parametric pool-size data, exploration risk factors, prospect numbers and
estimates of in-place oil and gas resource potential.
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style traps at the Appalachian structural front. Of the 7 conventional and one unconventional plays
identified (above figure), only three have enough production or exploration data to prepare
quantitative estimates of resource potential: the Lower Ordovician and Middle-Upper Ordovician
HTD plays and the carbonate thrust slice play. The other plays are evaluated on a qualitative basis.
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tectonics is recorded in the Humber Zone succession of Quebec whereas in western Newfoundland, the thin-skin tectonics
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is overprinted by a Devonian thick-skin event that led to the formation of a triangle zone (see adjacent seismic).

-~
(S

7k

land, the Cambrian Hawke Bay was a

secondary target in exploration drilling {3

Lower Ordovician HTD (R2)

The Lower Ordovician carbonates in southern Quebec, Anticosti and western

Potential Reservoir: In southern

o L !
Québec, the Upper Cambrian Potsdam consists of two units. The Covey Hill Formation

Upper Ordovician HTD (R3) Ordovician carbonate platform thrust slices (R6)

The hydrocarbon reservoir potential of the Upper Ordovician carbonates in

Geology

ofimpure sandstone and overlying Cairnside Formation of well-sorted quartzose

In southern Quebec, a major seismic program identified a large number of thrust

sandstone, In southern Quebec, the basal unit is time transgressive from the SSW

Newfoundland have been the pri t ts for hyd b loration drilling. s S
S ECANE b e RPN RS S SR SRt Shales of Middle to Late Ordovician occur throughout eastern Canada

towards the NNE. In western Newfoundland, the Lower Cambrian early drift Hawke . - : < . . . . . . slices at the A alachian structural front. a limited number of which were
The recent regional-scale recognition high temperature dolomitization provides a southern Quebec and Anticosti has been recently been proven with a discovery PP )

Bay sandstone is well-sorted with abundant wave structures and desiccation polygons.

and were deposited in the deep marine Taconian Foreland Basin.

These strata belong to the Table Cove/Black Cove/Winterhouse

In the Port au Port#1 well, the Hawke Bay is 64 m thick and has porosity up to 12.2%. subsequenﬂy drilled. A gas discovery was made and most of the thrust slices have

new exploration model for Lower Ordovician carbonate units. The Gentilly #1 well found an Upper Ordovician hydrothermal dolomite

The Garden Hill oil field was discovered in 1995 in western Newfoundland. The

Geographic distribution: The Cambrian sandstone play is recognized in southern

reservoir in southern Quebec. The reservoir is hosted by Black River HTD. tested some gas in the Lower Ordovician platform. In southern Quebec, the

Quebec and Western Newfoundland, however, its is absent on Anticosti Island.

Saint-Flavien gas field produced 5.7 Bef of gas, at 1.5 km deep with an average pay

Traps and seals: Traps and seals could include, amongst others, lateral pinchout and

oil and gas are hosted in hydrothermally-altered dolostones of the Lower Ordovi- During initial testing, gas was produced at rates up to 9 MMcf/d.

(Newfoundland), Macasty / Vauréal (Anticosti) and Utica / Lorraine /

channel-fill with various shale and mudstone seals. However, extensional (southern

zone of 3.5 m. The St. Flavien reservoir has porosity values ranging from 2.8 to 15%,
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Utica shale and correlatives. In the Gulf of St. Lawrence, the southern play limit

southwestern Newfoundland where minor but significant compressive deformation is Source rock, maturation, generation and migratio n: Lower and Upper Ordovician source Ordovician source rocks are the best, these type I and II source rocks have generated their hydrocarbons.

corresponds to a3 km thick Carboniferous cover. The Ordovician foreland sand play

relatively undeformed shales between the Yamaska Fault and Logans

is gas-prone in southern Quebee, but oil-prone in the northeastern segment of Gulf of documented. The p]ay is gas-prone except in the offshore domain between Anticosti and Newfoundland. From our understanding of thermal maturation, the entire play is gas-prone.

rocks are the best candidates, these type I and II source rocks have generated their hydrocarbons

St. Lawrence.

Line, where current exploration and testing is focused, 2) deeper,

Source rock, maturation, generation and migration: Ordovician source rocks are the best Traps and seals: Sstructural closures such as the one found at St. Flavien are.

Traps and seals: The most common trap is structural and consists of fold closures

Traps and seals: Transition from dolomitized intervals to tight carbonates. Structural features may

visible on offshore seismic lines. Faults may have also acted as traps preventing

tectonically-thickened shales in the dry gas zone, east of Logans Line
candidates, these type I and II source rocks have generated their hydrocarbons. Y yg ” g L]

hydrocarbon migration out of the reservoirs, Finally, some stratigraphic pinch-out significant[y mﬂdify the trap geometl’y. RiSk faCtOI'S: The main risk factor for the carbonate slices plﬂy is probahly the presence of an adeqllate

closures are expected

and 3) thinner, shallower, less deformed shales west of Yamaska Fault

Traps and seals: Transition from dolomite to tight carbonates. Structural features may modify seals. Risk factors: The main risk factor for the Upper Ordovician HTD play is adequate long term seal. long term seal.
: hich may include thermogenic and biogeni ibilities.
Risk factors: The main risk factor is the presence of an adequate long term seal. whie Fchule thermegenic amthiogenc possinilics
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Introduction

Stratigraphic framework

(Gander zone).

Maritimes Basin.

Structural framework

are generally open, with typical wavelength of ~5to 15 km.

regional-scale anticlines.

brittle motion along inherited faults is increasingly documented.

GEOLOGY

The term Gaspé Belt designates the stratigraphic package of sedimentary and volcanic units that
were deposited after the Taconian orogenic event (late Early to Late Ordovician) and before the sub-
aerial unconformity that relates to the climax of the Acadian orogeny (Middle Devonian). The
hydrocarbon-prone area is restricted to eastern Quebec and northern New Brunswick.

Uppermost Ordovician to Middle Devonian rocks belonging to the Gaspé Belt unconformably
overly, or are in fault contact, with older rocks that have been attributed to the Laurentian margin
(Humber Zone), to peri-laurentian oceanic domain(s) (Dunnage Zone) and peri-Gondwanian units

The sedimentary succession of the Gaspé Belt records three distinct regressive phases (R1 to R3)
separated by two transgressive events (T 1 and T2). The succession is divided in four broad temporal
and lithological packages, with from the base to the top: 1) the Honorat and Matapédia groups F
marine clastics and carbonates); 2) the Chaleurs Group (including a lower clastic assemblage, a
middle carbonate assemblage, and an upper clastic assemblage with local reefs and volcanic flows);
3) the Upper Gaspé Limestones (relatively deep-water limestones) and 4) the Gaspé Sandstones (
marine and terrestrial sandstones and conglomerates). In the areas surrounding the Gulf of St.
Lawrence, the Gaspé Belt is unconformably overlain by Upper Paleozoic rocks belonging to the

The main Acadian deformation features vary in style along the strike of the Gaspé Belt.
Significant thrust faulting is documented in the Témiscouata area, whereas orogen-parallel
transcurrent faulting prevails in the eastern Gaspé Peninsula and northern New Brunswick. Folds

In detail, the geometry of the Siluro-Devonian succession may be locally complex such as the one
illustrated on the seismic profile where both NW- and SE-dipping faults are documented in

Post-Acadian deformation has traditionally been considered as minor. However, post-Acadian
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Exploration history

Exploration in Gaspé Peninsula started in the mid-19" century
following the discovery of seeping oils in eastern Gaspé. Since 1860,
174 wells have been drilled in the Gaspé Belt, the vast majority being
located in the Gaspé¢ area. Initial drilling has targeted Lower Devonian
sandstones and limestones with minimal success. In the Gaspé area,

Twt

~—— VB6 - VB4A -~ VB4-B— - VB 4-C
NNW

seismic surveys in early 80's led to the first geophysical-based drilling

SSE sec.

Shickshock-Sud Amqui anticline

campaign. Only a small gas reservoir (Galt field, 728 MMcf gas field)
was discovered and led to intermittent production.

Source Rocks
The presence of fair-quality potential hydrocarbon source rocks

Fault

within the Gaspé Belt succession is restricted to the Upper Ordovician
Boland Brook Formation in northern New Brunswick (TOC up to
1,4%), and to Lower — Middle Devonian rocks corresponding to some
limy shale intervals in the Upper Gaspé Limestones (TOCmax =1,75 %,
HI=83) and to thin coal seams.

High TOC and HI source rocks are found in various outliers of
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.. Exploration history and shows

"4 The Lower Silurian clastic interval has
een tested by only three drill holes. To
ate, there are no discoveries for this play.

Potential reservoir

; The Lower Silurian nearshore to platform
ands were deposited near the end of the
first major regressive event.
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o bW Ordovician in age. An early charge of
z ,,q”;ﬁ,:- - 3 - sandstonereservoirs is documented by the
J{;‘ A j\g% - presence of abundant bitumen and
LA~ DI 25~ fluorescent oil in primary to secondary
pore space.
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Traps and seals

Structural traps such as open folds associated with Silurian normal
faulting or Devonian transpression or mixed structural/stratigraphic
traps may offer suitable closures. Where not fractured or
hydrothermally altered, the overlying limestones are tight and may
act as seal. The Upper Silurian Salinic unconformity may also

Conceptual sketch showing the Gaspé belt plays.
1- Lower Silurian clastics
2- Lower Silurian hydrothermal dolomite
3- Upper Silurian hydrothermal dolomite
4- Lower Devonian hydrothermal dolomite
5- Lower Devonian limestone
6- Lower Devonian sandstones

provide an adequate seal for Lower Silurian clastic units.

Risk factors

Little is known about the distribution of porous intervals within the
lower Silurian clastic units. The presence of an adequate long-term
seal may be problematic, especially in the hanging wall of Silurian
tilted blocks that may have been subaerally exposed during the
Salinic event.

LOWER SILURIAN
HYDROTHERMAL DOLOMITE
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A

nnnnnnnn

wwwwwwwww

Gulf of St. Lawrence

Gulf of St. Lawrence

67°00' 65°00"

vonian

Carboniferous

Source rocks

Trap formation

A, Seismic transect in western Gaspé Peninsula. B, Interpretation of the seismic transect shown in A.
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Ordovician deep marine shales belonging to the Dunnage Zone that are
observed at various localities surrounding the Gaspé Belt. These rocks

223?25?@‘1531333“&'335‘”"“ T sron s e s Horizontal and vertical scale are roughly similar. However, depths shown on the left side of the cross-
= shese :z'}:‘ggfﬁfé’J'ﬂ:TéE?Eﬁ;g!L“J&“) - Sécstlo(r}l should }zie conSIﬁ%‘éd fa;s approx1maf“[1;)lnséh N UG U e Chal include Lower to Upper Ordovician black shales of the Ruisseau
Sl I 1 , Gaspé sandstone; , Lower part of the Chaleurs Group; A er part of the Chaleurs : : 5
7 e Sanien oy o P P P PPEEP Isabelle Mélange (TOC values up to 2,73%), and the Middle Ordovician

Dubuc Formation in Quebec (Mictaw Group; TOC values up to 10,7%;
HI up to 257) and coeval Popelogan Shales, in northern New Brunswick
(TOC values up to 1.8% even if the rocks are at the end of the dry gas

PETROLEUM GEOLOGY (1)

LOWER DEVONIAN

High TOC values are also documented in Cambro-Ordovician rocks
belonging to the Humber zone that underlie parts of the Gaspé Belt.

Maturation, generation of hydrocarbon and migration

Maturation of organic matter is highly variable and ranges from
locally immature to the dry gas zone. Analyses of core samples show
that maturation positively correlates with depth and in most cases,
isocontours of maturation data are parallel to geological contacts. These
characteristics indicate that maturation is primarily related to burial and
that maximum burial predates the main Acadian deformation event.

1D thermal modelling suggests that the potential Devonian source
rocks have generated hydrocarbons in late Early to Middle Devonian.
Detailed paragenetic studies suggest that the potential Ordovician
source rocks have generated hydrocarbons relatively early in the history
ofthe Gaspé Belt, i.e., during the Early Silurian or earliest Late Silurian.

Early migration from pre-Lower Silurian source rocks is recognized
in Upper Ordovician to Lower Silurian units. Late migration from
potential Devonian source rocks or dismigration from older reservoirs is
recorded in post-Late Silurian units.

Hydrocarbon plays

Among the potential reservoir units, six have been considered in a
specific play. Given the limited sub-surface information, only the
Lower Devonian sandstone play has been be quantitatively assessed.

LOWER DEVONIAN GASPE SANDSTONES
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Exploration history and shows

Critical moment

i f / Lower Devonian pinnacle reefs have
never been tested by drilling.

Exploration history

The Lower Silurian limestone interval has been tested by only three
drill holes, which were not targeting HTD. A bitumen-rich succession
in northern Gaspé is interpreted as representing an exhumed oil field
(green star on the map).

Exploration history and shows

The Upper Silurian West Point Formation has been tested by four drill
holes, which were not targeted for HTD. To date, there are no
discoveries in this play.

Potential Reservoir

The Upper Silurian West Point Formation comprises three superposed
reef complexes. The middle reef complex was formed during a major
sea-level lowstand and evidence for sub-aerial exposition is found in
that interval as well as in the underlying succession. The reef complexes
are surrounded by fine-grained clastic facies.

The limestone shows little porosity in outcrop. However, significant
porosity enhancement by hydrothermal dolomitization (and/or
fracturing) cannot be excluded even though dolomitic breccia has only
been locally observed.

Potential Reservoir

Lower Silurian carbonates have formed in a laterally well-zoned
carbonate ramp dominated by a wide peritidal flat flanked by a shallow
subtidal narrow knob reef belt and a well sorted above fair-weather wave
base limestone sand belt. These rocks are tight except when secondary
porosity associated with hydrothermal dolomitization is present.
Hydrothermal dolomites exhibit major dissolution cavities and fractures
in breccia zones that are irregularly surrounded by massive dolostone.

Source rock, maturation, generation and migration

The best potential source rocks are Ordovician in age. Detailed studies
indicate that high temperature dolomitization occurred early in the
geological history, after the end of carbonate ramp sedimentation (late
Early Silurian), but before the sub-aerial exposure in middle Late
Silurian. Moreover, hydrocarbons have migrated soon after the
dolomitization event as testified by the abundant bitumen filling small
(mm-sized) to large (cm-sized) voids.

Source rock
The best potential source rocks are Ordovician in age.

Potential trap

Transition from dolomitized intervals to tight carbonate is expected to be
the main trap and seal controlling factor. However, deformation may
have significantly modified the trap geometry. The Upper Silurian West
Point reefs are surrounded by siliciclastic muddy facies that may act
both as a lateral and upper seals.

Traps and seals

Transition from dolomitized intervals to tight carbonate is expected to be
the main trap- and seal controlling factor. However, deformation may
significantly modify the trap geometry. The Late Silurian (Salinic)
unconformity may provide an adequate seal.

Risk factor

Geographically-restricted diagenetic analyses of the Upper Silurian
West Point reef limestone from the Chaleurs Bay area suggest that
meteoric water has influenced cementation early in the geological

; rh%ﬁtgﬁ% 9{}&9&})}}%@{1 | pgre spac ;In the shallow burial environment.

Risk factors ' - .
The presence of a long-term seAPYSPIBAHN hSsridliHghiieudy author.

both as a lateral and upper seals.

pores of the pinnacle limestone were not completely occluded before

,,_ﬁwl Potential reservoir

~'The Lower Devonian West Point]
Formation consists in isolated
" pinnacle reefs that are up to 300 m
i\ thick and a couple of km wide.

yearly.

Most of these pinnacle reefs are interpreted to have grown at the
margin of tectonically active fault block; the presence of extensional
faults offer the critical pathways for fluid migration leading to
hydrothermal alteration of the carbonate facies. To date, hydrothermal
dolomitization in the pinnacle reefs has been documented only locally.

’ Galt field
Potential reservoir

Source rock

Innorthern Gaspé, the best potential source rocks are Ordovician in age.

Traps and seals contributed to permeability enhancement.

The presence of transition zones between dolomitized intervals and tight
carbonates are expected to be the main trap and seal controlling factor.
However, deformation may have significantly modified the trap
geometry. The Upper Silurian West Point reefs are surrounded by
siliciclastic muddy facies of the Indian Point Formation that may act

Source rock

Traps and seals

Risk factor
Geographically-restricted diagenetic studies suggest that the primary

seal.

reefs were buried at significant depth suggesting that these rocks may
have preserved their reservoir potential for a relatively long period of
time.

Risk factors

Exploration history

Since the late 19" century, most wells
have targeted parts or entire succession
of the Upper Gaspé Limestones. Small
volumes of oil or gas are almost
invariably encountered. In eastern
Gaspé, the oil and gas fields of the Galt
property are hosted by fractured Upper
Gaspé limestones that have been
hydrothermally altered. The gas
reservoir has produced rates of 37
Mcf/d for a couple of years. A few
hundreds of oil barrels are produced

The Lower Devonian Upper Gaspé Limestones Group is dominated by
fine-grained, shaly and dolomitic calcilutite. The Upper Gaspé
limestones are generally tight, but relatively high fracture porosity is
observed close to NW-striking faults. Hydrothermal dolomitization has
been only observed close to significant fracture networks and may have

Source rocks of Ordovician and Devonian ages are documented.

Anticlinal folds have been a common exploration target in eastern
Gaspé and the Galt field is hosted in such a structure. However,
fractures appear as a key parameter for efficient porosity and
permeability. Massive to little fractured rocks are expected to act as a

The long-term sealing capacity of highly fractured zones appears as the

Exploration history

The Gaspé Sandstones have been the first exploration target in the
eastern Gaspé Peninsula Most wells show hydrocarbon indicators but
gave only minimal production. The Haldimand field was discovered in
2006 and is still under evaluation.

Potential reservoir

The Gaspé Sandstones record an abrupt shoaling event, from shallow
marine to terrestrial facies. The potential reservoir unit consists of high
energy, marginal marine to fluvial sandstone that locally fills channels.
Large scale migrating sand bars are locally highly porous.

Source rock and maturation

Source rocks of Ordovician and Devonian ages are documented. The
regional maturation data indicates that this play is oil-prone.

Traps and seals

Stratigraphic traps and seals are likely in nearshore coarse-grained
clastic units of the Gaspé Sandstones where rapid facies transition from
porous channel/deltaic wedges to mud dominated units are
documented. However, deformation may significantly modify the trap
geometry as in the case of the Haldimand field.

Quantitative evaluation

clastic play are largely unknown in the Gaspé
Belt. For quantitative evaluation purposes,
data from the largely time and facies-
correlative Lower Devonian Oriskany
Sandstone in eastern United States has been
used as an analogue. Other parameters such as
the thickness of the net pay zone, its porosity
and water saturation have been estimated
from petrophysical data from wells in eastern
Gaspé.

The prospect sizes for the Lower Devonian -

Cumulative frequency greater than %

Median value of probabilistic assessment is it B
16.2 million m’ (102 MMBO) of in-place oil R PR
distributed in 11 pools.
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STRATIGRAPHY

The Maritimes Basin contains up to 12 kilometres of Late
Devonian to Early Permian continental and shallow marine
strata, deposited in three main tectono-stratigraphic packages: a
late Devonian to early Carboniferous (Tournaisian) succession
of alluvial and lacustrine clastics and volcanic rocks in deep,
fault-bounded subbasins (Horton Group); a widespread early
Carboniferous (Visean) succession of marine carbonates and
evaporites and nonmarine clastics (Windsor and Mabou groups);
and a thick middle Carboniferous to early Permian succession of
alluvial, fluvial and estuarine clastics (Cumberland, and Pictou
groups) (Figures 2 and 6). Coal-bearing sections (coal
measures) are abundant in the Namurian -Westphalian
Cumberland and Pictou groups. The Upper Carboniferous
Pictou Group is up to 9000m in the central Magdalen Basin.
Basin structures are associated with rift faulting, strike-slip
related inversion tectonics (multiple phases), and salt diapirism.
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Figure 1: Carboniferous Maritimes Basin

REGIONAL SETTING

The composite Maritimes Basin is a large upper Paleozoic
sedimentary basin underlying the southern Gulf of St.
Lawrence and Cabot Strait, with onshore extensions in all
five eastern Canada provinces (Figure 1). Upper Paleozoic
strata underlie all of Prince Edward Island and the Magdalen
Islands (Quebec). Basin strata extend eastward beneath the
southern Grand Banks and northeastern Newfoundland
continental shelves. Easternmost segments of the Maritimes
Basin are overlain by Mesozoic-Cenozoic sediments of the
Atlantic continental margin. The Maritimes Basin includes
the Magdalen, Sydney and St. Anthony basins and a
multitude of local subbasins.
encompasses a total area of 250,000 km 2, with about 75% of
the basin area offshore.

The Upper Paleozoic Maritimes Basin developed in an
active plate tectonic setting, resulting in a multicyclic and
complex depositional and structural history. The basin's
tectonic history included extensional settings (Late
Devonian to Mississippian) and foreland basin settings
(Pennsylvanian to early Permian). Regional strike-slip faults
were active through most of the basin's development,
resulting in local development of pull-apart basins and
subsequent basin inversions and deformation. A late phase of
deformation and uplift/erosion of Maritimes Basin strata
was associated with Mesozoic rifting and formation of the
Atlantic Ocean Basin.
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Figure 10 - Carboniferous Sandstone Porosity-Depth Trends

Figure 14 - Coal Measures Source Rocks

The Maritimes Basin contains the key petroleum-system
elements for a substantial petroleum resource potential,
including widespread reservoir rocks (Figures 8, 9) thick

DISCOVERED FIELDS

Two onshore oil and gas fields have been discovered and
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Figure 20 - Cross-sections A-A’ (top) and B-B’ in Moncton Subbasin

PETROLEUM PLAYS AND RESOURCE POTENTIAL

The primary exploration plays in the basin involve Horton
Group sandstones or conglomerates in combined structural-
stratigraphic traps, and Upper Carboniferous fluviatile
sandstones in fault block and salt structure traps (salt W—
withdrawal anticlines, salt pillows, salt-flank onlap and sub-salt ]
traps (Figure 20). The sub-salt play includes potential Horton
Group reservoir strata. The upper Carboniferous salt-structure 80 ;
play contains the largest number and sizes of known prospects in =

the region. A third exploration play, currently poorly delineated ° . .
on a regional basis, involves carbonate reefs in the Windsor % foial Dl Potantin]
Group. # [t itee 5 (Median Estimate)

>
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Quantitative assessments of the main exploration plays (Lower g A Sa"?s“’__r"_’_ Flay HiA (1.5 BBO)
Carboniferous and Upper Carboniferous clastics: Figures 21, 2 Lower / ’
22) indicate the Maritimes Basin has low-to-moderate oil - Carboniferous |\

potential (Figures 23, 24) and high natural gas potential 20|~ Sandstone Play = EEEa
(Figures 25, 26). Further exploration in the basin will likely 1 \ \ HHHH
result in more gas discoveries, with potential for large (Tcf+)
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Figure 22 - Upper Carboniferous Play Area Figure 26 - Gas Field Size Estimates (10 largest)






