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Abstract 
 
Tectonic subsidence in rift basins is often characterised by an initial period of slow subsidence (“rift initiation”) followed by a period of more rapid subsidence (“rift climax”). Previous work 
shows that the transition from rift initiation to rift climax can be explained by interactions between the stress fields of growing faults. Despite the prevalence of evaporites throughout the 
geological record and the likelihood that the presence of a regionally-extensive evaporite layer will introduce an important, sub-horizontal rheological heterogeneity into the upper crust, there 
have been few studies that document the impact of salt on the localisation of extensional strain in rift basins. Here we use well calibrated 3D seismic reflection data to constrain the distribution 
and timing of fault activity during Early Jurassic-earliest Cretaceous rifting in the Åsgard area, Halten Terrace, offshore Mid-Norway. Permo-Triassic basement rocks are overlain by a thick 
sequence of interbedded halite, anhydrite, and mudstone. Our results show that rift initiation during the Early Jurassic was characterised by distributed deformation along blind faults within the 
basement, and by localised deformation along the major Smørbukk and Trestakk faults within the cover. Rift climax and the end of rifting showed continued deformation along the Smørbukk and 
Trestakk faults, together with initiation of new extensional faults oblique to the main basement trends. We propose that these new faults developed in response to salt withdrawal and/or gravity 
sliding on the evaporite layer above the tilted basement fault blocks. Rapid strain localisation within the post-salt cover sequence at the onset of rifting is consistent with previous experimental 
studies showing that strain localisation is favoured by the presence of a weak viscous substrate beneath a brittle overburden. 
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Tectonic subsidence in some rift basins is characterised by an
initial period of slow subsidence (rift initiation) followed by
more rapid subsidence (rift climax) (A; Gupta . 1998).

The rift initiation phase is characterised by distributed
extension accommodated by many active faults. The rift
climax phase is characterised by localized extension
accommodated by a few active faults (B).

Strain localisation is a consequence of interactions
between the stress fields of active faults (Cowie 1998). The
ability of a fault to grow is itself influenced by the
mechanical stratigraphy of the basin (e.g. Soliva . 2005).
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The aim of this poster is to investigate
the influence of sub-horizontal
evaporite layers on fault growth and
strain localization in rift basins.
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The Halten Terrace lies on the NE Atlantic margin, offshore Mid-Norway (C). The faults on the Halten
Terrace were active during Jurassic rifting. Permo-Triassic basement is separated from Mesozoic cover
by two 400 m thick salt units (D).This study focuses on the Åsgard area (C, purple box). Large-scale
buoyancy driven flow of the salt is not widespread, making a good location to study the impact
of salt on strain localization during rifting.

Åsgard
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Observations from the Åsgard area show that faulting in the
post-salt cover sequence is more localized than extension in
the pre-salt basement. Faults in the basement and cover
appear to have been active at the same time, i.e. localization
was rapid on a geological timescale. In comparison with
previous studies, there is no strong evidence for progressive
strain localization upward through the growth sequence (e.g.
Walsh . 2003).

The strength of salt is a function of viscosity and strain
rate, whilst the strength of the brittle sedimentary cover and
basement strata is a function of depth. Salt is likely to be
much weaker than the cover or basement rocks (K; Vendeville
and Jackson 1993). This suggests that the salt units in Åsgard
may act as sub-horizontal weaknesses.

Analogue models of fault growth show that localization of
strain onto a few large faults occurs at lower magnitudes of
extension in clay / silicone multilayers than in single layer clay
models (L; Bellahsen . 2003). The low viscosity silicone
underlying the clay allows faults to accumulate large throws in
the multilayer case.

We suggest that the presence of weak salt layers may have
enabled unrestricted growth of the Trestakk and Smørbukk
faults in the cover, promoting rapid strain localization. The
early onset of strain localization has implications for the
nature and distribution of early syn-rift reservoir sands in the
Åsgard area.
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Fault polygon maps show there is a higher fault density within
the basement (E) than within the cover at the base of the syn-
rift sequence (F). This implies that strain is more localized in the
cover - where extension is mainly accommodated along the
Trestakk and Smørbukk faults - than in the basement.

Across-fault sediment thickness variations show that activity
on the cover faults initiated during the Early Jurassic . A key
question is to determine whether the mapped basement faults
are in fact pre-Jurassic structures, the largest of which were
reactivated during Early Jurassic rifting and propagated
upwards into the cover.

Pre-Jurassic strata are characterised by parallel seismic
reflectors, with no evidence for reflector divergence towards
mapped faults (H). The patterns of flexure and onlap within the
cover sequence suggests that blind basement faults were active
during Early Jurassic rifting (H).

The simplest explanation is that the mapped cover and
basement faults initiated at the same time, i.e. during Early
Jurassic rifting, and that variations in salt thickness (H) are due
to lateral flow of the salt in response to faulting (see also
Richardson . 2005).
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The throw profile for the basement and cover segments of the Trestakk fault
(I) shows that for much of its length, the cover segment has a higher throw
than the basement segment. This observation is consistent with the more
distributed deformation in the basement than in the cover. A plot of
maximum throw vs. fault length (J) shows that apart from the smallest cover

faults (which can probably be attributed to flexure of the cover above blind
basement faults; H), there is little difference between the populations of
basement and cover faults. The total geometric moment estimated on
basement (Base Salt) and cover (Åre Coal) markers agree to within ca. 5%.
This suggests extension in the cover balances extension in the basement.
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1. Rifting in the Åsgard area of the Halten Terrace initiated during the Early Jurassic and was

accommodated by faults above and below two 400m thick salt layers.

2. The pre-salt basement is characterised by distributed deformation; the post-salt cover is

characterised by localised deformation along the Trestakk and Smørbukk faults. To a first order,

extension in the cover appears to balance extension in the basement.

3. By comparison with analogue models,the apparently rapid strain localisation within the cover may

be due to unrestricted fault growth above the weak salt layer.
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