${ }^{\text {PS }}$ Satellite Gravity and Geoid Studies Reveal the Formations Underlying Large-Scale Basin Structures

Carla Braitenberg ${ }^{\mathbf{2}}$ and Jörg Ebbing ${ }^{1}$

Search and Discovery Article \#40427 (2009)
Posted May 17, 2009

*Adapted from poster presentation at AAPG International Conference and Exhibition, Cape Town, South Africa, October 26-29, 2008. Companion presentations are "The Use of Multi-Level Potential Field Data in Regional, Geophysical Modeling" (Search and Discovery Article \#40426 (2009)) and "Insights into Basin Formation and Lithospheric Structure of the Barents Sea" (Search and Discovery Article \#30093 (2009)).
${ }^{1}$ Geological Survey of Norway, Trondheim, Norway (Joerg.Ebbing@ngu.no)
${ }^{2}$ Earth Sciences, University of Trieste, Trieste, Italy

Abstract

We compare results from studies of the global large-scale basins. Such large-scale basins are often referred to as cratonic or intracratonic basins. Detailed study of satellite derived gravity anomalies, geoid undulations and the isostatic state of large-scale basin structures shows that these basins show a series of distinctive features: the basins show in general the presence of volcanic material and a thick sedimentary succession, even with large variations in absolute thickness and areal extent. Most striking, however, is that for the majority of the basins we find evidence for high-density material in the lower crust and/or upper mantle. These high-density structures compensate at least partly for the low-density sedimentary infill, while crustal thickness variations and Moho topography cannot be considered solely as mechanisms of compensation of the sedimentary loading. This is in clear contrast to rift-type basins, and formation of large-scale basins is apparently inked to large-scale lithospheric processes. The global comparison allows us also to test mechanism models, which might be valid for less well known basins; e.g., the Congo basin.

The West Siberian Basin

 avialate information about seaimenaryy thickness, in isostatic a nomaly can be calculated, on which the extinct trifts are even more vis.
ibbe.
Below

Michigan Basin

Intracratonic basins of South America: Parana' basin (PA) and Parnaiba basin

cin

 Table below gives araal extert and maximum thickness, showing large
variations in the bassid dimensions.

Congo Basin

Conclusion
Satellite gravity ynd geoid are ideal to study large-scale basins:
-Gravity ynomaies can reveal extinct rift zones
-Gravity anomalides can reveal extinct rift roneses
At least two ollasses of intracratanic basins can be found.
A).e.,. Michigan basin Wests Siberian bosin
Gravity anomaly reflects extinctift

B) e.g., E Barents Sea basins. Parnaiba basin, Congo basin

Gravity anmamiies do not reflect rift zones

