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Abstract

The complex spectrum of heterogeneous facies architectures of carbonate platforms includes: 1) low-relief carbonate ramps that match
a shelf-equilibrium profile and are composed of either loose, fine-grained sediments produced in shallow areas but shed downdip, or
sediment mostly produced and accumulated in the deeper part of the depositional profile, 2) open shelf platforms involving large-
skeleton metazoans with moderate capacity to build above the shelf-equilibrium profile, 3) platforms with biotic components capable
of building up to sea level with a maximum ecological accommodation, and 4) platforms with steep, massive and thick marginal
slopes.

The depositional order of the basic accretional units (sequences, cycles, parasequences, and/or beds), their geometry and stacking
patterns provides a template for the interpretation of each platform succession. The interpretation rebuilds each platform in terms of its
distinctive and unique response to geotectonic setting and the physical, chemical and biological conditions at deposition, expressed in
terms of changes in both physical and ecological accommodation. Physical accommodation relies in basin floor conditions and
hydrodynamics, while ecological accommodation relies on the potential to build upward. Changes in ecological accommodation
depend on biological evolution, changes in ecological conditions and on the temporal/spatial evolution of the depositional settings.

Each succession has a distinct depositional profile, facies belt distribution, and platform architecture that guides the analysis of the
inferred character of the ecology of ancient biota and reduces the uncertainty of interpretation. This system formulates new questions
leading to realistic interpretations and enhanced predictions of lithofacies heterogeneities.
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Premise: Stratal patterns and facies architecture develop in
response to sediment flux and accommodation space

However: in lithoclastic systems sediment flux and
accommodation space are independent

In carbonate systems:

» sediment flux & accommodation are interdependent

= multiple kinds of sediment flux (production)
= accommodation is two fold: physical & ecological

Our objectives are ...

» to analyze the variability in carbonate platforms
through the Mesozoic & Cenozoic, and

= o discern the key factors in controlling the wide
spectrum of platform types and their internal
architectures




Accommodation:

the space available for sediment accumulation
(Jervey, 1988; Vail et al. 1991; Posamentier and James, 1993)

In lithoclastics, this is the space between sea floor and base level.

The “base level” for sediment accumulation tends to match the “shelf

equilibrium profile”, the depth at which sediments are stirred by waves
and currents (Swift and Thorne (1991).

This is the physical accommodation
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In carbonate systems, however, many controls exist

Biological evolution
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And these differences result in the wide spectrum of

A - Lithoclastic System = Physical Accommodation Only
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shedding

D - Physical Accommodation Only

" |euphotic

' oligophotic

Calcarenite (foram) wedges

SANTONIAN

Carreu-river section
NNE 85.8 Eustatic curve Hardenbol et al. (1998)

Herba-sabina clays

PLATFORM —-——_\
TYPES \_/

Montagut gully 1 Carreu river 1

O @ | @ (o G )
‘

gl

BM-D

aBM-B Montagut gully section

final drowning

thickness

1st drowning

fore-stepping
prograding
backstepping

accretional units

- Moderate Shallow-Water Ecological Accommodation

shedding Tﬁ‘_ﬁ

oligophotic

Rudist-coral buildups

[aphotic




- Highest Shallow-Water Ecological Accommodation

_'-_'_T"-A

[oligophotic

aphotic

reef-crest curve
%
5%

SIGMOIDS:

Tth order

Mallorca i ' P
Reef Complex o SETS OF SIGMOIDS:
Reef-crest line

-+—progradation—

16
0180 (%q)

Abreu & 2.0 200 - - <, -,
Haddad — W .k S —
(1998)

rotorost  MEGASETS: COSET OF SIGMOIDS:

24 - §e—-7rtime——

Messinian|  Tortonian
UPPER MIOCENE

the Llucmajor platform:
3th order




Two types of factories & basement control
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Conclusions

A - Lithoclastic System = Physical Accommodation Only

Large-scale diffusion mechanism, depending
SEQIMENT INPUT on the episodic nature of stonms
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Conclusions

The impact of high-frequency sea-level changes in producing
internal platform heterogeneltles
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Conclusions

Changes in platform type may occur
over short time intervals
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Conclusions

changes on paleoceanographic conditions may produce stronger
impact on stratal patterns and facies architecture than relative sea-level
changes if they affect the biological system
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Symbiodinium
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Conclusions: final remarks

Variability in carbonate platforms through the Mesozoic and
Cenozoic, results from a multi causal interaction:

v'Biological evolution & ecological requirements
v Tectonic settings -> Available space for the biota to thrive
v'Global to local climate

v'Global to local paleocenographic conditions

The diversity in platform architecture and the complexities in the
stacking patterns can be better recognized as the products of the

interaction of changes in both:

v ecological accommodation and physical accommodation

A mix of cautiously applied uniformitarianism associated with
process/product relationships provides clues for improving
uncertainties evaluation so these can be applied in sub-surface
interpretations.

Simultaneously it initiates new questions that drive the attention of
the interpreter to look for new answers.




Selected References

Abreu, V. dos Santos, and G.A. Haddad, 1998, Glacioeustatic fluctuations; the mechanism linking stable isotope events and sequence
stratigraphy from the early Oligocene to middle Miocene, in Mesozoic and Cenozoic sequence stratigraphy of European basins: SEPM
Special Publication 60, p. 245-259.

Badenas, B., M. Aurell, and D.R. Groecke, 2005, Facies analysis and correlation of high-order sequences in middle-outer ramp successions;
variations in exported carbonate on basin-wide (super 13) C (sub carb), Kimmeridgian, NE Spain: Sedimentology, v. 52/6, p. 1253-1275.

Badenas B., M. Aurell, T.F.J. Rodrigues-Tovar, and E. Pardo-lguzquiza, 2003, Sequence stratigraphy and bedding rhythms of an outer ramp
limestone succession late Kimmeridgian, northeast Spain: Sedimentary Geology, v. 161/1-2, p. 153-174.

Bassant, P., 1999, The high-resolution stratigraphic architecture and evolution of the Burdigalian carbonate-siliciclastic sedimentary
systems of the Mut Basin, Turkey: University of Fribourg, Switzerland PhD thesis, 277 p.

Brandano, M., 2003, Tropical/subtropical inner ramp facies in lower Miocene “Calcari a Briozoi e Litotamni” of the Monte Lungo area
Cassino Plain, Central Apennines, Italy: Bollettino della Societa Geologica Italiana, v. 122/1, p. 85-98.

Gomez-Perez, 1., P.A. Fernandez-Mendiola, and J. Garcia-Mondejar, 1998, Constructional dynamics for a Lower Cretaceous carbonate
ramp Gorbea Massif, North Iberia, in Carbonate ramps: GSA Special Publication 149, p. 229-252.

Posamentier, H.W., and D.P. James, 1993, An overview of sequence-stratigraphy concepts; uses and abuses, in Sequence stratigraphy and
facies associations: International Association of Sedimentologists Special Publication 18, p. 3-18.

Swift, D.J.P., and J.A. Thorne, 1991, Sedimentation on continental margins; I, A general model for shelf sedimentation, in Shelf sand and
sandstone bodies; geometry, facies and sequence stratigraphy: International Association of Sedimentologists Special Publication 14, p. 3-31.

Vail, P.R., F. Audemard, S.A. Bowman, P.N. Eisner, and G. Perez-Cruz, 1991, The stratigraphic signatures of tectonics, eustacy and
sedimentology; an overview, in Cycles and events in stratigraphy: Springer-Verlag, Berlin, p. 617-659.

Zachos, J.C., N.J. Shackleton, J.S. Revenaugh, H. Palike, and B.P. Flower, 2001, The climatic consequences of a rare orbital anomaly at the
Oligocene/Miocene boundary (23 Mya), in Earth system processes: GSA and GS (London) Programmes with Abstracts, 94 p.



