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Abstract 

 
The Trinidad Ultra-deepwater (UDW) area lies on today’s continental slope off the eastern coast of Trinidad; it overlies oceanic crust 
and is part of the Barbados Fold Belt. Sedimentation has been rapid due to the constant feeding of clastic material from the Orinoco 
River. Deepwater turbidite sands are interbedded with shales, possibly providing both reservoir and seals. Deepwater channels and 
lobes have been identified and mapped in the existing 2D seismic. There are 13 wells that reached the lowest Pliocene, immediately to 
the west of the UDW area, providing a direct tie to the seismic stratigraphy interpretation. Priority for reservoir was given to the late 
middle Miocene to Pliocene, if only because deeper sections are increasingly overpressured and therefore difficult and risky to drill. 
Clastic composition and texture are interpreted to be mature, with mainly quartzose sands of continental affinity, consisting of 
amalgamated sand in the lobes and fine sand/silt interbedded with silty shales, in predominantly distal turbidites or overbank deposits. 
Most of the structures identified were active during the Upper Miocene and Plio-Pleistocene, so no areas are expected to show sheet 
like, unconfined basin floor fans. The ongoing development of the accretionary wedge will have focused sediments in a NNE 
direction, in contrast to the SW-NE basinal axis trends which would dominate slightly older sediments. The growth of mud diapirs, 
probably initiated in the Plio-Pleistocene as increased amount of sediments were deposited, further complicated the depositional 
pattern. Turbidite deposition of upper and middle Miocene age is interpreted to be of distal fans facies, while in the Plio-Pleistocene, 
they respond more to a minibasin setting and channel-levee facies. 
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Conclusions

Deepwater sediments were deposited by flows 
running parallel to structural axis

GOM minibasin facies understanding can be 
applied to synclines in an active accretionary 
wedge

Distribution of facies evolved with structural 
growth



Regional location



Eastward accretionary wedge front propagation

from Pindell



Stratigraphic Chart
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Orinoco drains into and in front of the 
migrating accretionary wedge



U. Pliocene – L. Pleistocene (3-1 Ma)
Pathways of  the Sediments from Shelf to Basin
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Shelf Break

After Pindell, 2002

g g p ,
sediments supplied by the Orinoco river accumulated as deltaic
facies in the Columbus basin.

During lowstand of the sea level sandy facies reached the
deepwater zone, transported along the SW-NE oriented structural
lows and accumulated within ponds or “minibasins”



Heliconius – 1, Pleistocene

11460-11515´: 55´ gross SS, vf, med, well sorted, friable. No 
hydrocarbon shows. Av. porosity 32%.



ExxonMobil Heliconius-1
Lesson Learned

P134 Anomaly: Far offset data show bright amplitudes down to -3,425m
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UDW Blocks – Pleistocene Units
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Haydn – 1, Pleistocene
Horizon “55”: net sand: 14m por: 21%-27% Sw: 40% 156 BCFHorizon 55 : net sand: 14m, por: 21%-27%, Sw: 40%, 156 BCF

Horizon “60”: net sand: 9m, por: 23 – 30%, Sw: 40%, 59 BCF



Catfish – 1, Lower Pliocene

14430-14580´: 140´ gross SS, vf, med, well sorted, friable, 
max gas peak 0,43 %. Porosity: 22 %.
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West of the UDW area, deepwater turbidites and 
shale diapirs

water bottom



Modern analogs



Turbidite System in Structurally Confined 
Basins Channel and Lobe Facies Distribution
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Channels evolve to lobes when the down-slope gradient and/or flow-confinement change. As
upslope ponds are filled, turbidite currents spill through channels producing down cutting.
The new lobes (sheet-like sandstone bodies) accumulate down-slope. Whereas thick sand
packages are deposited in the lows (reservoir), In the surrounding highs hemipelagic muds
accumulate (lateral/top seal).



Evolution of Confined Basins
Facies Architecture
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A. Early fluid gravity-flow events tend to ‘sheet-outward’ across the basin floor (sheet-like sandstones) and onlap the basin margin
if the flow sediment volume is large enough. As the mud-content increases the channel/levee and background mudstone aggrades
toward the equilibrium profile.
B Once the slope basin is filled to the down-slope spill point the channel-levee system begins to erode and readjusts the slopeB. Once the slope basin is filled to the down-slope spill point the channel-levee system begins to erode and readjusts the slope
toward a new equilibrium profile and transports significant volumes of sediment to the next down-slope minibasin.
C. If the gravity-flow sediment supply is cut-off by avulsion of the supply system or relative rise of sea level, the entire area
becomes draped with hemipelagic mudstones. These hemipelagic mudstones provide topseal and often separate pressure
compartments.



Near Base Pleistocene isochron map
Minibasins and clastic transport pathways
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Regional W-E section

Kingfish ProspectHeliconius -1



Upper Pliocene horizon (from Catfish) depicting minibasins, fault
propagated folds and shale-cored  ridges

Heliconius

Mud Diapir
Catfish

Fault-cored Ridges



Minibasins: Facies Seismic Signature MTC, 
Sheet-like and Channelized Bodies
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Minibasin Fill in Trinidad UDW
Sequences and Facies Architecture

Mud-rich intervals
and/or MTCChannelized facies

Sheet-like facies

The lower interval of each sequence are prone to develop sheet-like sandstones, accumulated as lobes in a basin floor fan 
setting. In the upper portion of each sequence channelized bodies, with or without attached lobes, are more common.
Y it ithi th i ib i i l d f h li d b di l t d ithi th di t ib t tYounger units within the same minibasins are mainly made up of channelized bodies, accumulated within the distributary system
of the deep water environment, and lobe accumulation should have been developed basinward. The youngest units have 
developed channel-levee complexes as observed in the area at the present day.
Sheet-like and channelized bodies are incased within mud-rich packages that clearly show features related to mass-transport 
complexes (MTC).



Kingfish structure
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Kingfish structure and RMS amplitude
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Kingfish Lower Pliocene facies
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Kingfish Lower Pliocene facies
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Trinidad UDW Blocks 5 and 6 Pliocene LST
Deepwater Channel and Lobe Facies Distribution
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Kingfish structure, amplitude and facies
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Trinidad UDW Schematic Evolution of
Accretionary Wedge Minibasins
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