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Abstract

Trenton-Black River hydrothermal dolomite reservoirs of eastern North America formed when hydrothermal fluids (80-170 degrees C)
flowed up active margin-bounding and transtensional faults and dolomitized the formations within the first 500 meters of burial. An
unequivocal hydrothermal origin can be demonstrated where primary fluid inclusion homogenization temperatures from the dolomites exceed
maximum ambient burial temperatures by at least 10 degrees C. Using these criteria, virtually all of the dolomite found in the Trenton and
upper parts of the Black River in Kentucky, Ohio, Michigan, Wisconsin, and Ontario is of a hydrothermal origin. This is a very large volume
of dolomite (hundreds to possibly thousands of cubic kilometers), that includes some areas of widespread, pervasive dolomitization.

An immense amount of fluid would be required to make that volume of dolomite, and new fluid flow models are required to solve the mass
balance. These might include fault-driven forced episodic convection, recharge of basal aquifers that feed the faults by slowly descending
saline brines sourced from seawater and/or mixing of hydrothermal fluids with in situ seawater at the site of dolomitization. Free convection
in the absence of faults is not likely to play a significant role as permeability barriers would prevent hydrothermal conditions from
developing. Additionally, there must be an element of fluid flow from the basement to explain fluid inclusion homogenization temperatures
that commonly exceed the maximum ambient burial temperature for any part of the underlying sedimentary section.

This example, along with others such as the dolomitized Jurassic and Cretaceous of northern Saudi Arabia, suggests that hydrothermal
dolomitization can be widespread and pervasive and should be considered along with other models when interpreting the origin of
dolomitized reservoirs.
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Alteration localized
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Hydrothermal Fluid
Flow

Hydrothermal fluid — fluid with temperature at least 5°C greater than
ambient burial temperature at a given depth (generally requires a
fault source) (Davies, 2001; Machel and Lonee, 2002)
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Geothermal fluid flow is mainly lateral flow, fluid is same
temperature as ambient burial temperature




Many dolomite

occurrences /
current Ordovicia

Trenton Black River hydrothermal dolomite reservoirs — hosted in
limestone - also many occurrences of non-reservoir dolomite




Structural Settings of Dolomitization

 Laterally discontinuous dolomitized Trenton and
Black River reservoirs occur around basement
faults in two main settings

— Around intra-platform negative flower structures that
form when pre-existing basement faults are reactivated
In a transtensional sense

e Most with minor offset and faults that die out In
Utica

— Carbonate platform margin-bounding faults with shale
basin (extensional or possibly transtensional)

— Also found dolomite in positive flower structure
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Figure 5-10Well logs from the Glodes Comers Road field.
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The ~continuous nature of the sag suggests that it formed
from NNW-SSE oblique divergent slip (transtensional)
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Each sag occurs in a negative flower structure formed on a synthetic
shear fault (Reidel) that is linked to an underlying left-lateral master fault




Negative Flower
Structure

No vertical offset
on fault here

Block Model for transtensional pull apart — Dooley and McClay, 1997 -
Note in cross section view that either side of fault zone Is not vertically
displaced but that significant thinning occurs within fault zone




Black River

-

Courtesy, Talisman

Seismic Line from heart of Black River producing area in NY with three
producing wells, each in a separate sag — Basement offset is not obvious
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When stretched vertically, basement control becomes clear; sags almost all
accommodated in overlying shale suggesting early faulting and alteration
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Modified from Wickstrom et al., 1992
Dolomitization in Trenton occurs along margin with shale basin,

around intraplatform wrench faults and at fault intersections




“Facies” Dolomite —occurs along margin of Seebree Trough in
OH and IN, matrix porosity, little obvious vug- or fracture-filling
white saddle dolomite




FACIES PACKAGES
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Trenton Depositional Environments with Fields (map from Keith)




Based on this map, it looks like many of the fields occur parallel to
the margin of the Seebree Trough. Fields are not confined to the
margin, however, and occur both in the Trough and back on the
platform — These are commonly oriented at an angle to the margin
Faults that set up the margin were conduits for later fluids




Fluid Inclusion Homogenization Temperature vs. Salinity
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¢ Kentucky Samples = Ohio Samples ® New York Samples

Most of the dolomite formed between 85-160C and all of it formed
above surface temperatures — most salinities between 13 and 24 wt%




Geochemistry Summary

Strontium isotopes radiogenic relative to Late Ordovician
seawater

Stable isotope values deleted relative to what one would
expect for seawater dolomites

Dolomites enriched in Fe and Mn

Fluid inclusions, stable isotopes, strontium isotopes and
trace elements all support a hot, subsurface origin for all
the dolomite in the TBR

The fluid that made the dolomite was hot, saline, +2 to +4
d180, Fe- and Mn-rich and passed through basement rocks
or immature siliciclastics prior to making the dolomite

The link to faults suggests a hydrothermal origin
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Can use CAI (conodont alteration index) values to determine burial
history (regional USGS study)




Conodont Color Alteration Index Temperatures for Geological
Heating Durations of 10-100 m.y.
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Using temperature ranges calculated experimentally by Hulver, 1997
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Fluid inclusion homogenization temps vs. maximum burial
temperatures - unequivocally hydrothermal at red dot locations
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In all locations except NY, fluid inclusion homogenization
temperatures exceed maximum ambient burial temperatures




Dolomltes formed at
temperature >>
maximum Phanerozoic
burial temperature =
hydrothermal

occurrenges
current

Matrix and saddle dolomites in red circle have fluid inclusion
homogenization temperatures >>maximum ambient burial temperature
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Unlikely that temps achieved by lateral flow — fluids would cool
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Must have vertical flow out of basement to achieve high temps
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Given the widespread occurrence of hydrothermal dolomite here and
elsewhere, this model should always be considered as a possibility




Mass balance

 Large amounts of fluid and magnesium are
required for this (or any other dolomite) to form

e lIdeas for fluid:

— Mixing with in situ marine phreatic fluids (mainly
seawater — this provides Mg as well) (Salas et al, 2007)

— Recycling in fault zone
— Broad recharge, focused discharge

* |deas for magnesium:
— Mixing with in situ marine phreatic fluid

— Some could be leached from underlying early dolomites
— Basement source?
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Mixing with in situ seawater or marine phreatic fluid in altered zone -
Work by Salas et al, 2007 shows that in some cases dolomitization
could occur from mixing of hydrothermal and in situ fluids
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“Above 60°C there
IS no dolomite

problem” — Hardie,
2004

Seawater has about
5 times more
magnesium than
calcium so even if
the hydrothermal
fluid 1s Ca-rich, the
mixed fluid might
still make dolomite




Conclusions

Fault-related hydrothermal processes are capable of
producing large quantities of reservoir-quality
dolomite and should be considered with other models
when interpreting the origin of dolomites

Must be a component of fluid flow out of basement (at
least in some cases), which may be why these

reservoirs only occur around basement-rooted faults

Mass balance problems may be overcome through
mixing with in situ marine phreatic fluids, fluid
recycling in fault zone, cannibalization of early
dolomite, other models

Similar process appears to produce leached limestone
which may be even more common in reservoirs
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