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Abstract

Sequence stratigraphy is founded on identifying stratal discordances, a geometrically scale-independent procedure amenable to experimental
stratigraphy. Here we perform a sequence stratigraphic analysis on an experimental fluvio-marine deposit for which the boundary conditions
and depositional history are known. Our goals are to (1) evaluate when sequence stratigraphic markers are created and how they are
structured, and (2) quantify the extent to which the bounded strata honor the known basinal sedimentation patterns. The generation of
sequence stratigraphic surfaces is through shifts in sediment mass balance, which is expressed at the surface as an evolving fluvio-marine
surface profile. By direct comparison of measured surface topography with preserved stratal surfaces, we show that marine disconformities
are especially robust indicators of relative base-level fall. These surfaces, along with maximum flooding surfaces, correlate closely with
specific geomorphic surfaces and thus are nearly time synchronous. Erosional surfaces, however, are diachronous and not associated with any
instantaneous topographic surface.

Although sequence stratigraphic surfaces are recurrent features in the experimental deposit, their areal correlation and properties are closely
related to the shape of the associated stratigraphic cycle, erosion from subsequent cycles, and autogenic overprinting. These effects prohibit a
basin-wide correlation of any one horizon. However, by mapping the stacking arrangement of the bounded strata and applying time
constraints on the stratigraphic surfaces, we find remarkable agreement between the stratigraphic and known depositional history. This
demonstrates sequence stratigraphic horizons accurately capture shifts in the basinal mass balance, and form largely independently of the
speed and manner of the changing depositional profile.
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Sequence stratigraphic (time-integrated) imprint of an evolving
depositional profile
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XES Basin and XES 02 experiment design
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Stratigraphic methods: data integration

XES basin seismic survey grids
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Stratigraphic methods: horizon interpretation

Conceptual model
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Stratigraphic methods: horizon interpretation

Full suite of stratigraphic horizons is not always present for each cycle
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Stratigraphic surfaces: time significance: D,,
(Chronostratigraphic significance is proportional to geomorphic significance)
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Stratigraphic surfaces: time significance: O,,

(Chronostratigraphic significance is proportional to geomorphic significance)
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Stratigraphic surfaces: time significance: E;

(Chronostratigraphicsignificanceis proportional to geomorphic significance)

To topographicresolution, E; spans the base-level fall period

At base-level minimum E; below topography (by up to 3 channel depths!)

Deep erosion etches E; locally

No clear geomorphic equivalency



Stratigraphic surfaces: time significance: E¢

Quantify geomorphic significance of E¢ using topography data
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Stratigraphic surfaces: spatial structure: D,,
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Stratigraphic surfaces: spatial structure: E.
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Sediment mass migration

XESO02 stratigraphic surfaces result from and are primary indicators of shifts
in the basinal mass balance

How well does the bounding strata stacking arrangement honor the known
depositional history?
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Sediment mass migration
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Key results

Mass balance effects from variable base level produce similar stratigraphic
discordances at field and experimental scales that permit discretization of
deposition

O,, and D,, demonstrate closest time equivalence with the deposit surface
O,, and D,, Are robust indicators of base-level fall and rise, respectively

E- has no clear geomorphic or absolute chronostratigraphic significance

Stacking arrangement of strata honors the known preserved depositional
history






Stratigraphic surfaces: time significance: E¢

(Chronostratigraphic significance is proportional to geomorphic significance)

Co-eval incised valley and clinoform
deposition during base-level fall
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