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Abstract 
 
Forward stratigraphic modeling of a conceptual isolated carbonate platform produces four distinct depositional profiles, determined 
essentially by water depth, with characteristic facies belt dimensions and lateral relationships. Profile A (shallowest) shows a 
grainstone shoal margin on the high-energy edge of the platform, 250-500 m wide, with a raised rim and shallow platform interior 
dominated by packstones. Profile B also shows a high-energy grainstone rim, 500-1000 m wide with no significant margin relief, and 
a platform interior dominated by packstones. Profile C occurs in a deeper bathymetric setting; high-energy conditions flood the 
platform, and platform-centered grainstone shoals develop with widths of 2000 – 5000 m. Profile D (deepest profile) has deeper water 
packstones developed across the platform top, with no grainstone development.  
 
In an aggrading platform with only monotonous sea-level rise and no sea-level cyclicity, only profile B develops. This is the stable-
state for platform-growth in this model. During sea-level stillstands, profile A will eventually develop. During a deepening sequence, 
profiles B, C, and D develop in rapid succession prior to final drowning. Profiles C and D can be considered transient or unstable 
states, as their productivity rates are too low to keep up with sea-level rise, and thus are rare during times of monotonous sea-level 
rise. However, when sea-level cycles are introduced unstable profiles C and D may dominate the platform. Grainstones (profile C) or 
packstones (profile D) can dominate platform-top deposition throughout the cycle, with abrupt shallowing to the raised grainstone rim 
(profile A) occurring at maximum sea-level fall.  
 
The depositional profiles described above have characteristic facies belt dimensions, geometries, facies-proportions and stratigraphic 
occurrences. These simulations help to predict facies belt geometries and constrain facies belt dimensions for isolated platform 
reservoirs found in the Caspian Basin. 
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Introduction & aims

Can forward stratigraphic modeling add insight to 
our understanding of architecture & reservoir 
distribution in isolated platforms?

Investigate a series of simple models where we 
vary sea-level in both a monotonous & cyclic 
fashion.



Method & outline

Build a base-case model

generate a range of simulations with varying rates of 
accommodation change (both monotonous & cyclic)

Analyze these models:
gross platform geometries
n/g & reservoir volume
resulting depositional profiles
examine root causes of changes
implications for sequence stratigraphic interpretations

Conclusions



Parameters chosen to approximately 
resemble a Carboniferous grain-
dominated platform with microbial 
boundstone slopes like Tengiz

Building a base-case model

Platform-center grainstones

Platform-rim grainstones

20 km

500 m

grainstone

packstone

grainstone

from Weber et al., 2003



Input parameters :
Model size = 20 km x 20 km
cell size = 250 m x 250 m (80x80 cells)
time step = 0.5 Ma for 30 Ma duration
production rules : depth & energy 
control on production
transport rules : downslope transport 
(gravity)
accommodation changes : linear 
(model 1) & cyclic (model 2)

Building a base-case model: using Dionisos…



Linear accommodation increase model
Low rate

High rate
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Drowning with linear accommodation increase
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Bathymetry variations with depositional profile
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Linear accommodation model results

1. Accommodation rate controls gross 
platform morphology

2. Reservoir volume & net-to-gross increase 
with increasing accommodation rate up to 
the drowning threshold

3. Five seemingly depth-dependent 
depositional profiles (A-E) have been 
distinguished in the drowning case



Cyclic accommodation model
Low

amplitude
cycles

High
amplitude

cycles
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Accommodation

Depositional Profile
A B C D E

Depositional Profile
A B C D E

Depositional Profile
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Bathymetry variations with depositional profile

D C B A
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Rate of bathymetry change (x-axis) vs bathymetry (y-axis)
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Conclusions

1. N-G increases with increased accommodation 
rate (up to drowning threshold).

2. The simulator produces a limited number of 
depositional profiles (solutions) showing 
variations in reservoir distribution.

3. Even a simple simulation resembles reality.

4. Bathymetry alone will not uniquely define the 
depositional profile for a given system: multiple 
possibilities exist (partially dependent on rate).

5. Interpreted SB & MFS positions relative to 
accommodation cycle changes with cycle 
amplitude.
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