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Abstract

Shallow-water carbonates are thought to fill the accommodation space in each high-frequency sea level change, but Holocene and late
Pleistocene deposits show the geologic record to be much more complex, with examples exhibiting unfilled, irregularly filled, and
overfilled accommodation space. Where filling occurs, it is often achieved with one facies, indicating that progradational patterns are
likely the result of lateral stacking during subsequent sea level changes.

As an example, the present-day topography on Great Bahama Bank from platform-margin dune ridges to the subtidal platform interior
is approximately 12 m, and in a few cases up to 20 m. Both muddy and grainy tidal flat systems locally fill accommodation space to
mean sea level. High-energy beach-dune ridges locally overfill accommodation space. Cores through tidal flats document that the
provenance does not change significantly during the filling of the accommaodation space; i.e., the high-energy grainy tidal systems
remain grainy even in their uppermost portions. Pleistocene cores from the platform interior rarely display a shallowing-upward trend,
but exposure surfaces rest directly on subtidal facies, indicating that in this environment accommodation remained unfilled until sea
level dropped. The lack of clear shallowing-upward trends in facies is common in the cores from the modern bank, indicating that
facies boundaries move little during one high-frequency sea level cycle. Facies juxtaposition occurs more frequently in successive sea
level changes.

Based on the Pleistocene-Holocene succession of Great Bahama Bank, we speculate that many depositional cycles in the rock record,
for which a change in the provenance is reported, might in fact be two cycles. In addition, the topographic relief in each cycle might
have been underestimated, which might have lead to miscorrelations of cycle tops.
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Sand belt north of Ocean Cay
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Tidal deltas south of Ocean Cay
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Pleistocene Topography and
Thickness of Helocene Deposits
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Pleistocene sea level
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Facies and Cycles at Unda, western margin of GBB
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CORE 5
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' Synthetic stratigraphy

E:)Om

— Cendensed

Magacycle

Rhythmic
Megacyle

[T T T GURRI I I

Amalgamated
Megacycle

History of
sea level

sedimentation subsidence

Time (millions of years)

|_white bands =
time submerged

’ble.ck bands =
time exposed

|_sediment
surface
=
-25m +25m

Sea Level Amplitude

meters

Missed beats

due to variable filling of
accommodation space

CORE UNDA CORE 5
WESTERN GBB CLIFTON PIER
5 ] Pseq. 1
Pseq. 2 S Seq I\
10
Pseq. 3 10
15
Pseq. 4
Pseq. 5 154
20 - Pseq. 6 ” Seq. Ill
Pseq. 7 8 20T Seq T [ Brunhes
25 E Matuyama
Seq. |
Pseq. 8 30
30
35
Brunhes
35 |
et Matuyama
Pseq. 2
40
Pseq. 3




Cycle thickness versus sea level amplitude
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Cycle thickness versus sea level amplitude
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Sea level curve for last 150 kyr
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Conclusions

« Accommodation space is filled irregularly,
mostly not completely filled but also
“overfilled” in places
* Depositional topography creates

e cycle thickness variations

 missed beats
* In the Pleistocene cycle thickness is not
reflecting sea level amplitudes
» Suborbital sea level fluctuations may
produce meter scale cycles on a platform
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