${ }^{\text {AV }}$ River Deltas in Crater Lakes on Early Mars

By

Janok P. Bhattacharya ${ }^{1}$, Tobias Payenberg ${ }^{2}$, Simon Lang ${ }^{2}$, and Mary Bourke ${ }^{3}$

Search and Discovery Article \#110026 (2005)
Posted August 30, 2005

${ }^{1}$ UT Dallas, Richardson, TX (janokb@utdallas.edu)
${ }^{2}$ University of Adelaide, Adelaide, Australia
${ }^{3}$ Planetary Science Institute, Tucson, AZ

Abstract

There remains significant debate as to whether there were persistent water flows, significant precipitation and standing water bodies during the early Noachian history of Mars. Recent Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) images of meandering channels associated with a Noachian-age, lacustrine delta within Holden NE Crater show evidence for persistent water flows.

The topmost layer shows clear evidence of meandering streams associated with four depositional lobes. The channels record a complex history of migration, avulsion and bifurcation, forming a distributive pattern with up to 5 orders of branching. Several channels show a distinct transition from initially straight, to highly sinuous followed by classic chute cutoffs.

Relatively smooth, and more brightly reflective layers deeper in the crater fill may represent more-flat lying lacustrine bottom sets, and could speculatively be evaporitic. The transition from smooth lower layers that lack channel belts, to straight channels to meandering channels suggest a progressive evolution of the sedimentary fill.

Our analysis of the surface features, as well as estimates of accumulation rates of the underlying 150 meters of strata within the crater fill, suggests that Holden NE Crater may have contained a lake that persisted for a few thousand to possibly as long as a few million years. This supports the hypothesis that early Mars was both warmer and wetter during the Noachian. In addition, these sediments represent a probable watery habitat that should be investigated for evidence of possible extinct Martian life.

Janok P. Bhattacharya, Pim Tobi Payenberg,

OnILane and Mary

Envjsofusujsion Early

- Mars may have been fiftier and wetter in early history.
- Escape velocity of Mars much lower than earth, so atmiosphere has lorig since escenped.
- Could life 'have evolyed on early Mars?
- Evidence for water comipelling:
- Present Nasa Misson's have founcl evidence for water that could indicate potential habitats for life.

Martian History

- Noachian: 4.5Ba - 3.5Ba - Heavy bombardment
- Hesperian: 3.5-2.0Ba
- Moderate bombardment

Views of hypothesized watery Mars Goddard Space Flight Center, 2001

- Amazonian: 2.0Ba - present
- Light bombardment
- Mars is tectonically inactive and has been that way for most of its history.
- Near complete record of Archean.

Searening for Evidence of Ancient jurerlaid deposits: Creter Ludse

Valles $\sqrt{\text { ENimeris }}$

Themis Image Map of Mars

Vailes Marimeris

Themis Image Map of Mars

Vailes Marimeris

Holden Crater

Delta-Like Fan on Mars Suggests Ancient Rivers Were Persistent

NASA Asks, 'Did Rivers Once Run on Mars?'

Newly seen details in a fan-shaped apron of debris on Mars may help settle a decades-long debate about whether the planet had long-lasting rivers instead of just brief, intense floods.

Pictures from NASA's Mars Global Surveyor orbiter show eroded ancient deposits of transported sediment long since hardened into interweaving, curved ridges of layered rock

Recent Papers:

Malin, M.C., and Edgett, K.S., 2003

Moore, J.M., Howard, A.D., Dietrich, W.E., and Schenk, P.M., 2004
Lewis, K. and O. Aharonson, 2004
Jerolmack, D.J., D.M. Mohrig, M.T. Zuber and S. Byrne, 2004
Bhattacharya, J.P., Payenberg, T., Lang, S., and Bourke, M., 2005

Area NE Holden Grater

Martian Drainage

- How long-lived was drainage basin?
- How was drainage basin carved?
-Rainfall?
-Groundwater sapping?
- Caused by bolide impacts that melt groundwater

Map of Drainage basin

Close-up

Close-ur

Lack of craters in drainage headwaters suggests rainfall, rather than groundwater melting from bolides.

A Meander Valley

Meandering
valleys require
long-term flows,
rather than
single
catastrophic
meltwater
floods.

Lets look at the crater fill

- Records complex history of fluvial

Martian Delta Lobes

 avulsion and channel migration.- Downstream bifurcation suggests \uparrow a distributive system.
- No obvious reworking by waves or tides.

Braided to Straight Trunk
Feeder
Streams

A 1st order

- 2nd order
- 3rd order
* 4th order
- 5th order

Close-up View of Meanders

- Coarse-grained channel belt deposits are held high.
- Finerinterchannel (floodplain) sediment is eroded by wind.
- Inverted geomorphology.
- Channel belt surface is severely pockmarked, suggesting an extremely old (Noachian) age.
- Over 3 Ga.

- Channels about 100 m wide.
- Cross-cutting relationships.
- Channels wander, meander, and avulse.
- Scroll bars represent "frequent"floods.
- Avulsions represent "infrequent" major-floods.
- How frequent???

- Original straight channel becomes sinuous and unstable and experiences a classic chute cutoff.
- 11 avulsions sweeping across the delta plain.
- How frequent?

Feeder Streams

A 1st order

- 2nd order
- 3rd order
* 4th order
- 5th order

1 km

More close-ups

- Older channels are straight and then become more sinuous.
- Younger channels overlie older channels.
- Clear bifurcation downstream, suggesting distributary channels.

Delta versus Fan

- Lack of debris flows or sheetflood deposits.
- Highly organized single-thread, straight to meandering channels.
- Lack of braided channels
- indicate lower slopes or lower discharge than might be expected on an alluvial fan.

Estimating the duration of the delta

River
Mississippi
Rhine-Meuse
Saskatchewan
Yellow
Po
Kosi (Mega-Fan)

Mean Avulsion Period
(years)
1400
945
670
600
490
28
Data compiled by Bridge, 2003

- Deltaic versus fan numbers considered more likely
- No vegetation on Mars, but floodplain may have been frozen much of the year: stable floodplain?
- Assume avulsion period of 100-500 years?
- 11 avulsions $=1100$ to 5500 years for topmost layer.

- Let's look at the distal end to get thickness.
- Examine edge of outcrop to get thickness.
- 150 m thick
- Note lighter deeper layers
- Prodelta bottomsets?
- Evaporites?

Conclusion

- Long-lived delta.
- Complex, dynamic history
- Countless scroll-bar flood events
- 11 avulsions in top layer
- Feature may have formed over 10,000 to 100,000 years.
- Clearly not due to 1 major bolide-induced catastrophic groundwater melt episode.
- It was probably raining on Mars during the Archean.

Could Ife have occupied this potential habitat?

Meandering
 Channel on Venus

Feature interpreted to be formed by Carbonate-Sulfate Lavas, that have fluid properties similar to water on earth

Lava Deltas on Venus

- "The universe is not only as queer as you suppose, but it is queerer than you can suppose." (J.B.S. Haldane)

