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Figure 18. Chronostratigraphy and sequence stratigrpahy of
Jurassic successions on the Moesian Platform, correlated with
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Delia VAMU Due t_o the strlke-s:hp deformat_lor_l in the NW, high |
Fan delta DRAGANU subsidence prevailed. The uplift influenced the sedi-
Regressive littoral bars | MALU MARE mentation in the NE and SE, where subaerial erosion
Submatine channel MAMU resulted in intraformational hiatus or re-
Lan deita DRAGANY sedimentation (Figures 19, 20, and 21). In late
Regressive fittoral bars | MALU MARE Baioci late Callovi d late Tithoni th
Ears it DRAGANU ajocian, late Callovian, and late Tithonian, the
Littoral bars MALU MARE strike-slip system was more active, while the influ-
Regressive littoral bars | FAURESTI ence of the syndepositional normal faults decreased.
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Fan delta To illustrate the distribution of the linkage and con-
Deita front, Littoral /Spt | FAURESTI temporaneous depositional systems, two examples o
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Systems Tract and late Tithonian carbonate autoch- o e T
Figure 22. Systems tracts related to the oil fields. thonous Wedge Lowstand SyStems Tract. ; : _ _ .
Figure 21. Late Tithonian depositional systems-Lowstand
The Middle Jurassic depositional systems are repre- Systems Tract.
sented by coastal fluviatile domain, littoral and off- Conclusions
shore bars, strand plain, delta system, shelf, shelf mar- The defining of the major events in the basin evolution of Central Moesian Platform
gin, slope, fan delta and basin (Figure 20). Offshore (Figure 22) led to the following conclusions:

distal sandbars, littoral bars, and delta front and fan

delta represent the prospects for lancu Jianu, Fauresti, - Based on older and new considerations, Permian-Jurassic successions may be inter-

Spineni, Oporelu, Bacea, and Ciuresti hydrocarbon preted in terms of intracratonic extensional basins followed by subaerial erosion and

fields. strike-slip deformation in the northern part of the study area; in the southern-central
areas, conditions for thermal subsidence of the basin prevailed.

In Late Jurassic, the depositional systems consisted of - The hydrocarbon fields are distributed asymmetrically. The fields producing from the

carbonate shoals, banks or reefs on the internal and Triassic and the Dogger are located in Malu Mare, lancu Jianu, Negreni; South Ciuresti,

external shelf, a marginal shelf, faulted slopes, and Fauresti, Spineni, Simnic, Ghercesti, Circea, Malu Mare, and Ciuresti fields are producing

basin (Figure 21). The main prospect is represented by from the Dogger, only, while North Ciuresti and Barla fields are also producing from the

Tithonian carbonate shelf margin with diagenetic con- Tithonian.

trol on the pore system. - It is worth noting that most of the Jurassic commercial hydrocarbon accumulations are

encountered In the strike-slip basin, and they are controlled by antithetic and synthetic,
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