Time-Lapse Seismic in a CO₂ EOR Flood and Implications for CCS Reservoir Monitoring

Gordan Holmes¹, Nic Bongiovanni¹, Tracy Wulf¹, Stephen Schneider¹, Scott Maxwell¹, Brian Chacka¹, and Hussain Sheikha¹

¹Denbury Resources Inc.

Abstract

The Intergovernmental Panel on Climate Change assessment on climate change includes industrial scale carbon capture and geological sequestration of CO₂ (CCS) as a mitigation strategy for limiting global warming and that the current rates of deployment are far below those needed. Consequently, governments are incentivizing industry to address this challenge and a rapid growth in CCS is underway.

A key requirement of geological sequestration is the monitoring of the CO₂ plume behavior. This will involve the use of time-lapse (4D) seismic monitoring along with other monitoring methods combined with reservoir modeling. The energy industry has expertise in all these elements from hydrocarbon exploration and development, and therefore industrial scale CCS is highly anticipated to be successful. However, CO₂ behavior in sequestration must be studied to calibrate reservoir models and deepen and refine our understanding of CO₂ movement.

The energy industry has many years of monitoring CO₂ movement for enhanced oil recovery (EOR) operations where the injection of CO₂ in oil fields facilitates more effective production. We present the time-lapse seismic monitoring results from a Denbury Gulf Coast EOR project. To date, five 3D surveys have been acquired for time-lapse monitoring starting with the baseline survey shot in March 2014.

Changes in seismic amplitudes of the injection intervals clearly demonstrate the ability of 3D Seismic surveys to monitor CO₂ movement and can be explained by the combination of the fluid properties of CO₂ and the high porosities of the reservoir sands. Amplitude variations over time can be interpreted as CO₂ movement and variations in sand quality. The discrete downdip amplitude changes conform to structure and supports that the amplitude changes are due to CO₂ movement and that the CO₂ movement is not creating diffuse or patchy CO₂ fluid distributions