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ABSTRACT 

Oil and natural gas accounts for more than 57% of energy consumption, and the worldwide utilization 
is increasing at the rate of 1.8% for oil and 0.9% for gas. This paper analyzes and draws insights on 
machine learning techniques that have been implemented in the oil and gas industry at different levels 
across the entire value chain. This paper aims to provide a comprehensive state of art applications of 
Machine Learning (ML) and Deep Learning (DL) in the Oil and Gas Industry. The literature study is 
conducted to investigate the applications of ML and DL in different process chains (upstream, 
midstream, and downstream). The paper also attempts to build a taxonomy for the different processes 
of the hydrocarbon’s exploration and production. It is a study of different ML processes involved in 
different sectors of the industry and how it has mitigated challenges to achieve a step change in 
operations in the entire oil and gas value chain. 

 

INTRODUCTION 
The global economy heavily relies on the oil and gas industry (OGI) to fulfill the energy needs to 
compete for industrial development.. The reduction of utilization of oil and gas is the common agenda 
globally by promoting different renewable sources of energy, still oil and gas will constitute to more 
than 50% of the global energy requirements till the year 2040 [1]. 

Apart from meeting the energy requirements, the oil and gas and its by-products are raw 
products for petro-chemical industries such as chemicals, drugs, fertilizers, pesticides etc. The 
increasing demand of the outputs from the OGI to integrate with the new technologies is rising faster 
than ever. Moreover, the pricing of oil and gas has a rippling impact which reduces overall economic 
growth, GDP, and increases inflation [2]–[4]. The increasing prices have often led to economic 
recessions in countries [5]. 

The volatile nature of the prices is impacting both the resource rich as well as import 
dependent countries. Therefore, the oil and gas companies are bringing in new technologies into their 
production line to reduce the losses and increase the efficiency. The technology will help the industry 
by creating network-based data communication to generate information for knowledge creation and to 
optimize the production cost [6]. In recent years, industry has adopted and developed new 
technologies for intelligent drilling, digital platforms, drilling robots etc. [7], [8]. 

The different processes of the industry generate an enormous amount of data, referred to as big 
Data, presented in Table 1. Analyzing and drawing insights from data could easily be done with the 

 



 

use of machine learning (ML) and deep learning (DL). The ML and DL techniques have been 
implemented in the industry at different levels 
for different sectors [8], [9].   The operations 
in the OGI are divided into three groups: 
upstream, downstream, and midstream. 
Leveraging ML and DL techniques in an 
efficient way can help in better decision-
making across all sectors. This can ensure 
proper functioning of all the components of 
the systems to ensure early detection of faults 
[10]. 

 
 

Table 1. Different processes generating amount of data [10] 
 

BACKGROUND 
This section focuses on the basic sectors of the oil and gas industry, ML and DL. 

A. Oil and Gas 
The OGI can be divided into three key sectors upstream, midstream and downstream. The activities in 
OGI directly or indirectly impact everybody’s life due to its usage in day-to-day life like 
transportation, electricity etc. [11]. 

Upstream: It is also called the E&P (Exploration and Production) sector that involves all the 
activities starting from exploring for a potential source of oil and gas to finally extracting it. It starts 
with a geological assessment for determining whether or not a given land or sea prospect is viable for 
drilling, followed by the use of geophysical methods to locate the presence of subsurface bodies. 
Gravity, magnetic, electromagnetic, and seismic methods are used for the same. Exploratory wells are 
then drilled to test the resource and the process of extracting the hydrocarbons is called production. 
The stream of petrophysics helps in the interpretation of the well log data and the stream of reservoir 
engineering is concerned with producing oil and gas reservoirs to maximize the extraction. 

Midstream: The midstream activities mainly include transportation and storage. It links the 
upstream and downstream sectors. Oil and gas are transported via pipelines, tanker ships, trucks and 
railways. Finally, there are bulk terminals, refinery tanks, holding tanks, and underground reservoirs 
that store the oil and gas. Midstream assets and activities are found at any location where oil and gas is 
produced, transported, or sold. 

Downstream: It involves refining crude oil, purifying the natural gas, marketing and 
commercial distribution of the finished products. Some of these products include LPG, petrol, diesel 
oil, natural gas, kerosene, lubricants, and gasoline. 

 
B. ML and DL 

The applications of ML and DL are already being deployed or envisioned in every sector of the 
industry. ML and DL, which is a subset of AI, helps systems to automatically learn and improve from 
experience, without being explicitly coded for each iteration. These techniques have huge potential to 
provide information from the heterogeneous data generated by different processes that helps in the 
decision-making process for different issues of OGI [9], [12]. 

 



 

Machine Learning: ML algorithms can process large amounts of data and help in extracting 
information using different models. The primary task of ML is to perform prediction, clustering, and 
decision making from the available input parameters [13], [14]. In OGI, it has the potential 
implementation in designing and developing the exploration plan, monitoring and diagnosing, 
predicting, forecasting and performing real-time optimization without much human intervention at a 
minimal cost [15], [16]. ML algorithms are mainly of three types: Supervised Learning, Unsupervised 
Learning, and Reinforcement Learning. 

Supervised Learning (SL): In SL models are trained on ‘labeled’ data, implying that both input 
and output variables are known to the machine. The task is to find the best relationship between the 
input and output variables using different algorithms to predict the outcome correctly [17]. The model 
is initialized with control parameters and then the input data is fed into the model. Then the model 
adjusts its weights and parameters until the model has reached an acceptable accuracy of prediction, 
followed by the cross-validation process to check overfitting. After getting the satisfactory results 
from the validation process, the model can be used for testing new data points [18]. 

Unsupervised Learning: This type of learning also known as exploratory learning in the field 
of mathematics where the dataset used are ‘unlabeled’ [19]. Clear input and output are not known to 
the system and the task of the model is to draw inferences such as extract patterns, similarities, and 
differences among the data points without analyzing the output [20]. 

Reinforcement Learning: In this approach, a method of evaluating how good or bad the 
behavior of the model is used. The model rewards the desired behavior to encourage the agent and 
puts a penalty on the negative behavior [21]. This reward and penalty mechanism makes the agent 
look for maximizing the overall reward to attain the optimal solution of the problem [22]. 

Deep Learning: It is a subset of ML, uses neural networks which passes data through layers for 
learning. The word ‘deep’ in DL refers to the number of layers that are used in the neural network 
[23]. There is one main reason why DL is increasingly becoming popular as compared to traditional 
ML algorithms. After attaining a threshold, the traditional ML algorithms do not exhibit improvement 
even if we increase the amount of data used for training. But deep neural networks exhibit significant 
improvement as more and more data is supplied [24], [25]. It can handle colossal amounts of data and 
can perform complex tasks like well data analysis [26], image processing [25] etc. 

 
C. Need of ML and DL in OGI 

The oil and gas industry, similar to many other industries, is going under a digital transformation, 
often referred to as ‘Oil and Gas 4.0’. The usage of real-time data and field actuating devices has 
increased exponentially in the upstream oil and gas industry, resulting in several digital oilfield 
installations. These have been shown to improve operational efficiency and increase production. 
Simultaneously, digital oilfield deployments have aided better and faster decision-making while 
lowering health, environmental, and safety threats. A digital oilfield's predictive analytics component 
is responsible for creating data-driven insight into the oilfield's current and future prospects. This 
component, which frequently incorporates ML algorithms, is critical to the effective implementation 
of digital oilfields [27]. 

 
APPLICATIONS 

This section will discuss the various applications of ML and DL in the OGI, following a structured 
taxonomy as shown in Figure 1. 

 



 

 

 
Figure 1. Applications of Machine Learning and Deep Learning in Oil and Gas Industry 

1. Upstream: 
The upstream oil and gas sector is under increasing pressure to reduce costs and increase efficiencies 
so it can remain competitive in an evolving landscape. In this paper, we discuss the ML and DL over 
widely incorporated different aspects including geology, geophysics, estimation of petrophysical 
properties, reservoir simulation, reserve estimation, reservoir performance, production, and 
forecasting, well placement and hydraulic fracturing optimization. 

a. Exploration: 
Drilling a well for extracting oil and gas is a big-budget costly process. If the drilled well turns out to 
be unproductive, it can be a huge waste of time, money, and resources. This is riddled with multiple 
risks as the explorationists need to identify subsurface prospects accurately for drilling and 
exploitation of hydrocarbons. And the only available information one has is from limited 2D seismic 
data. Hence, to increase the chances of drilling a productive well, it is of extreme importance that 
information of the Earth’s subsurface is collected and studied in a critical manner. 

i. Geology 
Oil and gas fields are usually located at places that face simultaneous occurrence of geologic features 
like oil and gas source rocks, migration, reservoir rocks, seals, and traps. Folded and faulted rock 
strata commonly form traps and accumulate fluids like petroleum and natural oils. Hence, geological 
assessment clearly plays a crucial role in identifying the best possible spots to drill. The interpretation 
of the geological data is left to experts of the domain, whose decisions are mostly based on personal 
skill, knowledge, and previous experiences. Therefore, it involves a lot of uncertainty. 

 



 

ii. Geophysics 
To obtain information about the subsurface, many geophysical methods like gravity, magnetic and 
seismic are implemented, seismic being the most common. The seismic waves are vibrations that 
travel through the ground. Based on the travel time of the reflected waves, various information is 
extracted. The seismic images provide detailed structure of the underlying surface. It shows faults, 
folds, orientation of the rock layers, shape, and size of these layers. These images can be 2D sections 
or 3D volumes (cubes) and are studied extensively to identify and pinpoint areas where oil and gas is 
most likely to occur. Moreover, the seismic images might have missing data in some portions due to 
various problems in data acquisition or processing issues. The further exploration processes heavily 
depend on the interpretation from these seismic records. Hence, it is important to have high-quality 
images for getting better insights. 

 
1. Seismic Interpolation 

Seismic processing techniques often assume data is regularly sampled in space, but acquisition 
methods, particularly in marine environments, rarely achieve this in practice. Data exhibiting large 
gaps and irregular sampling need interpolation and regularization prior to further processing. This 
being the critical component for exploration for data sources, constructing regularly shaped wavefields 
and filling in missing data is a dire need of the hour. The Generative Adversarial Networks (GAN) can 
be used for interpolation of these images. With the help of GANs, the bad traces can be reconstructed, 
and hence, better, and complete data can be used for analysis [28]. Furthermore, it can also be 
extended to improving the resolution of the images. 

2. Seismic Inversion 
The raw seismic data that is obtained needs to be processed before it can be used to extract 
information about the subsurface. This process of converting the seismic reflection data into properties 
of the rock is called inversion. The key to processing the seismic data is seismic velocity modeling. 
The task of inversion can be automated by training a model over seismic records mapped to their 
corresponding earth model and generating elastic profiles (P-wave velocity, S-wave velocity, density). 
From ML point of view, the task of inversion can be considered as a regression problem. The input for 
the DL model is seismic images. By training a CNN model on these images, we can simultaneously 
estimate all three elastic parameters (P-wave velocity, S-wave velocity, density). Training can be done 
on seismic records that are mapped to an earth model [29]. The results show a good match, but the use 
is restricted to a particular geographic location and needs a good amount of preprocessing for real-
world data. After inversion, comes the task of picking faults and deciding the best possible spots to 
drill a well. The manual process of fault detection is time-consuming, labor-intensive, and subjective 
to experts’ opinions. Automating this task can save a lot of time and facilitate better decision-making. 

3. Automated Fault Interpretation 
Fault detection and interpretation from the seismic images can be done by using computer vision. The 
state-of-the-art CNN can be put to use for this task. Real seismic images, along with augmented ones 
or synthetic data can be used to train the CNN model. There are different approaches to the problem 
[29]. One way could be to consider it as an Image Segmentation problem, in which each pixel can be 
classified as 0 (for non-fault) and 1(for fault). The other way is to consider it as an Image 
Classification problem and identify fault or non-fault just for the center of the image. The paper uses 
the later approach and also determines the fault dip and azimuth. 

 



 

b. Data Analysis and Reservoir Modeling 
i. Petrophysics 

To maximize production, optimal production techniques are a must. Hence, understanding the 
behavior of reservoir fluids under different conditions is necessary. An important part of reservoir 
characterization is to construct 3D images of the petrophysical properties. Conventionally, this is done 
by using core, well logging and pressure test analyses. The results are physics-based and empirical 
models are used. Some relations are highly non-linear and simple empirical models might fail in 
giving better results. Also, these processes might take a great deal of time without assuring reliable 
results. 

DL, on the other hand, can capture complex correlations and patterns among various features. 
Also, a lot of data is available in the form of core, well logs, seismic data and production data of 
development wells, which can be deployed in DL models. Determining petrophysical properties like 
facies, lithology, porosity, permeability, saturation, mobility, etc. can then become easier. Petrophysical 
properties can be estimated from pre-stack seismic data with the help of CNNs [30]. Two 
petrophysical properties, namely porosity and volume of clay are predicted. To train the CNN, two 
approaches are discussed. First, the end-to-end CNN that directly estimates the petrophysical 
properties from the pre-stack seismic data. Second, Cascaded CNNs that predict elastic properties at 
first, and then petrophysical properties are estimated using the elastic properties. Water saturation in 
carbonate reservoirs can also be determined using Artificial Neural Networks (ANNs) and ANFIS 
[31]. The input is conventional wireline log data, and the output is core Dean-Stark data. ANN can 
also be used for lithology estimation from spectral IP data. It is considered to be a multiclass 
classification problem. The input is spectral IP data. The output is four lithology labels: Intrusive 
rocks, Carbonate rocks, Skarn rocks, Mineralized rocks. Conventionally, this is done using equivalent 
circuit analysis [32]. However, incorrect circuit parameter selection can lead to unrealistic or divergent 
outcomes. Hence, neural networks provide a great way to deduce reasonable results. 

A unique integrated DL solution has been presented for predicting petrophysics, pore pressure 
and geomechanics properties [33]. Three DL neural networks were trained. The first one predicted 
petrophysical properties. Compressional velocity, gamma ray, density, resistivity, and neutron logs 
were used as inputs to predict volumes of shale, sand, dolomite, calcite, kerogen, and porosity. The 
second neural network predicted pore pressure. The inputs in this example were compressional and 
shear velocity, density, resistivity, neutron logs, and porosity, shale volume, and kerogen volume 
predictions from the previous stage. The third neural network used only compressional velocity, shear 
velocity and density logs as input. Other petrophysical properties like permeability, fluid volume, 
kerogen properties, etc. have also been predicted using DL techniques. 

For a large reservoir with enough log data, a deep neural network can be trained and the 
petrophysical characteristics for a completely new well can be estimated [34]. Thus, virtual logs at any 
location in the reservoir can be created by using information about the nearby wells. This is done with 
the help of Recurrent Neural Networks (RNN) and CNN. 

ii. Reservoir Engineering 
One of the most important tasks regarding a reservoir is reservoir calculations, to forecast the 
production and estimate the reserves. The forecasts assist in operational decision-making for the short 
term and help in the management of the reservoir in the long term. The traditional method involves 
fitting a curve through the history of the production volumes of a well, and extrapolating it to predict 

 



 

the future production, commonly called Decline Curve Analysis (DCA). A time-series forecasting 
approach using DL models can be used to do the same more efficiently. 

 
1. Production Forecasting and Reservoir Estimation 

RNNs can predict the production of a well using its history of the production and the history of 
production of the nearby wells as well [35]. The input features used were daily production data of oil, 
gas, and water, together with wellhead pressure. The output was multiphase production predictions in 
the near future. Different methods including DCA, physical models like IPR + VLP, DL models, and 
hybrid models (combining physical methods and DL), are compared to make short-term, mid-term, 
and long-term predictions [36]. DL models performed better than the rest in the short term whereas 
physical methods and hybrid models could forecast the long-term production better. These forecasts 
can be improved by using EnKF (Ensemble Kalman Filter) - enhanced RNNs [37]. Estimated Ultimate 
Recovery (EUR) can be estimated simply with the help of geological data [38]. It uses inputs as 
geological parameters like Thickness, Porosity, Bulk Density, Vitrinite Reflectance, Water Saturation, 
Total Organic Carbon, and Brittleness. The method used is called stacked denoising autoencoders. 

2. Well Placement 
Well Placement optimization is an important aspect of Reservoir Engineering. The goal is to maximize 
the economic benefits by extracting maximum hydrocarbon production. Conventionally, full-physics 
reservoir simulation (RS) has been used for estimating productivity. But, it is computationally 
expensive. DL techniques prove to be faster and more accurate than the reservoir simulators. CNNs 
with robust optimization can be used for determining the placement of an oil well at a reservoir [39]. 
The CNN takes near-wellbore permeability data as input. The output is cumulative oil production at a 
feasible well location. This output is maximized to obtain the best possible location for well 
placement. Thus, the CNN is trained to correlate the petrophysical spatial data with the productivity 
levels, which are used in well-placement optimization. 

 

c. Production 
1. Production Surveillance and Analysis 

A lot of data is now available in the oil and gas industry because of the well sensors that record 
various information after every few seconds. Permanent downhole gauges (PDGs) continuously record 
information like pressure, temperature, and flow rates. Analysis of the PDG data plays an important 
role in production surveillance. One of the critical tasks is to develop a relationship between pressure 
and flow rate. Recurrent Neural Networks (RNNs) can be used to learn patterns from the PDG data 
[40]. Two models are implemented to study the flow rate and pressure relationships: Standard RNN 
model and Nonlinear autoregressive exogenous model (NARX). Both the models were efficient and 
studying and predicting the flowrate and pressure data. It also shows how flow rate can be modeled on 
the basis of temperature. The NARX model was successful in learning the mappings between 
temperature and the flow rate. This can be of immense importance from an engineering point of view 
as flow rate profiles can be constructed by using the temperature data from sensors. The same analysis 
can be done on the production history of the existing wells [41]. The production dataset used has 
information about average downhole pressure, average downhole temperature, oil flow rate, gas flow 
rate, water flow rate, on-stream hours and choke size percentage. This data is used for estimating the 
pressure by using methods like Gated Recurrent Unit (GRU), Long Short Term Memory (LSTM) and 

 



 

a combination of RNN with CNNs and LSTNet (Long Short Term Time-series Networks). The study 
helps in understanding the short-term and long-term recurring patterns. 

2. Predictive Maintenance 
The oil and gas sector relies on a variety of massive, expensive machines. Huge amounts of losses can 
occur if these aren't functional and well maintained. By employing predictive maintenance, these risks 
can be minimized. It includes monitoring the machines, predicting failures, maintenance decision-
making and hence, cutting the operating costs caused by severe equipment failure. ANNs can be used 
to predict Remaining Useful Life (RUL) of the machinery used in the oil and gas industry, helping in 
better decision making related to maintenance costs and ensuring reliability of the machines [42]. A 
multivariate dataset for a duration of 1 year is used for training. An ANN model is then trained for 
RUL prediction, after filtering the important ones using correlation. Predictive maintenance for the air 
booster compressor motor, which is an important device in oil and gas processes can also be devised 
[43]. A prediction model that uses RNN-LSTM (Recurrent Neural Networks - Long Short Term 
Memory) has been trained and simulated to provide early warning on motor faults. Various parameters 
related to the motor like the current, active power, discharge temperature, winding and bearing 
temperature, airflow, air pressure and vibration are considered for prediction. DL algorithms can be 
employed for health state prognostics of physical assets in two real-life scenarios from the OGI [44]. 
The first scenario involves an offshore natural gas treatment plant where anomalous CO2 levels in the 
treated gas are to be predicted. The input, received from the sensors located at various points in the 
plant, provide data related to non-treated gas flow rate, its temperature, pressure of the amine at the 
reboiler, etc. LSTM-based encoder is used for anomaly detection by forecasting the elevated levels of 
CO2. In the second situation, the health state of a sea water injection centrifugal pump must be 
predicted. Sensor measurements provide information about temperature, flow, suction pressure, 
discharge pressure, etc. A CNN-LSTM model is trained for a multi-class classification and the health 
state (Normal, Incipient, Degraded, Critical) is predicted. 

3. Real-time Hydraulic Fracture Analysis 
Hydraulic fracturing is a well stimulation process in which large volumes of frac fluids are injected 
into the well under high pressure. This creates fractures in reservoirs and creates new pathways for 
extracting oil. For a successful hydraulic fracturing, it is important to monitor the subsurface fractures 
and the formation of these subsurface fractures is indicated by surface pressure profiles. Hence, 
ensuring that the surface pressure data is accurate and devoid of noise is extremely crucial. RNNs can 
be used to estimate the real-time surface pressure during hydraulic fracturing [45]. The surface 
pumping data, which includes surface pressure, pumping flow rate and proppant concentration, is used 
as input. The LSTM is used for predicting the surface pressure in real-time. Sometimes during the 
process of hydraulic fracturing, the solid proppant used in frac fluids forms a bridge across the 
perforations. As a result, fluid flow is suddenly and significantly restricted, leading to a quick rise in 
pump pressure, causing screen-out. DL, along with physics-based approaches, can provide advanced 
warning of screen-outs in real-time [46]. The input included 3 real-time time series and 11 engineering 
features. The real-time time series input had information about the surface treatment pressure, flow 
rate and proppant concentration. The engineering features covered cumulative flow rate, cumulative 
proppant volume, pressure divided by flow rate, geological areas and formation types. The models 
tested were CNN-LSTM and ensemble model. 

 
2. Midstream 

 



 

a. Pipeline Leak Detection 
Pipeline leaks are prevalent in remote oil and gas sites. Because of the harsh environments in which 
oil and gas pipelines are placed, it is difficult to rely on human operators to physically monitor the 
pipelines and respond to leaks. With the changes in climate and the soil composition there is incessant 
wear and tear in the pipelines that hinders the optimal flow and reduces the efficiency of transportation 
[47]. The delay in detection of these wear and tear may result in leakage that can have a major impact 
on the environment, human life, and economy. Therefore, early detection and prevention of wear and 
tear, leakage and localization of faults is a challenging problem [48]. CNNs can be used to detect 
leakages in pipelines [49]. IoT cameras installed at various points on the pipeline capture images that 
are used as input for the CNNs. It involved two tasks, image classification (whether or not a leakage is 
present) and image localization (getting an exact location of the leak). 

b. Pipeline Maintenance 
Pigging is a technique used by operators to run oil and gas pipelines more smoothly. PIGs, which 
stands for Pipeline Inspection Gauge, are used to undertake various maintenance tasks. They are 
utilized for a variety of tasks, including pipeline cleaning and inspection. Analyzing pigging data is 
crucial, and it necessitates knowledge on how to utilize specialized software as well as the capacity to 
comprehend the signals gathered by the sensors. CNNs can be used on the images from the in-line 
inspection magnetic flux leakage data. The CNNs are trained on labeled data for Feature Detection and 
Metal Loss Detection [50]. 

 
3. Downstream 

The downstream sector includes refining and marketing. One of the most difficult tasks in the oil 
refining and petrochemical sectors is maintaining production equipment while continuing to operate. 
As a result, technology that can foresee equipment breakdown is in high demand. After achieving a 
stable operation, the next goal is to increase production and maximize profitability. Because separation 
and other operations in the oil refining and petrochemical sectors consume a significant amount of 
energy, it is also critical to reduce energy consumption [51]. 

a. Predictive Analysis 
Predictive analysis can help detect changes in system behavior far ahead of standard operational 
alarms, giving more time to correct problems. Various algorithms are being used for the process. 
Neural Networks use parametric technology but take a lot of time in the training process. Clustering 
identifies groups/clusters of data, for example, turbine cycles from start-up to shut down. Decision 
Tree Learning, Fuzzy Logic, DL and other Pattern Recognition techniques are also being used [52]. 

b. Quality Estimation 
Evolving Intelligent sensors can be used for estimating various quality parameters of the distillation 
process. Some of the examples are discussed. The temperature of the heavy naphtha when it 
evaporates 95% liquid volume can be predicted by using inputs like pressure of the tower, amount of 
the product taking off, density of the crude, temperature of the column overhead and the temperature 
of the naphtha extraction. To predict the temperature of the kerosene when it evaporates 95% liquid 
volume, inputs like pressure of the tower, amount of product taking off, density of the crude, 
temperature of the column overhead, steam introduced in GOL stripper, temperature of the kerosene 
extraction and temperature of the naphtha extraction are used. The Abel Inflammability Index of the 
Kerosene can also be predicted using a set of relevant features [53]. 

 



 

CONCLUSION 
The oil and gas industry has numerous hurdles to overcome in order to remain viable in the future. 
Many of its procedures have been assisted by the development of data-driven technologies. Although, 
various limitations can be identified in these applications. The results produced by the algorithms 
heavily rely on the inputs, which are unique to the region, machinery or the process involved. As a 
result, there is no universal algorithm structure that can be utilized in all circumstances; rather, the 
algorithm must be modified each time. DL approaches work effectively with Big Data. The data 
obtained for some of the tasks related to OGI is limited. Hence, deploying deep learning algorithms on 
such small datasets makes it difficult to acquire useful insights. Furthermore, DL algorithms such as 
CNN and LSTM were developed with a specific objective. These models' specifications and structure 
are unique to the task at hand. For better results, a new application necessitates a model that is 
essentially being designed for it. Additionally, the data obtained from the industry is not publicly 
accessible. To overcome these limitations, several steps can be taken. First, developing models that 
cater to the needs of a particular task in the oil and gas industry that needs to be solved, which would 
require expertise in both domain knowledge and deep learning. Using Transfer Learning and making 
data accessible so that more researchers can work upon it can also be helpful. Also, methods can be 
developed to acquire more data. The industry faces newer challenges while embracing ML and DL. 
The gap between data scientists and petroleum engineers needs to be bridged. Customizing the deep 
learning techniques according to the need of the problem creates a demand for individuals who have 
both, data science skills as well as domain expertise. To implement machine learning and deep 
learning techniques, it is important to monitor the facilities continuously. There is a need for 
continuous information related to the reservoir, wells and facilities. But the resources to collect this 
information as well as software and hardware requirements for doing so are limited. The industry 
currently lacks in this aspect. This necessitates the need of advanced technologies, sensors and 
softwares that can provide and process a stream of data in an efficient and accurate manner. 
Furthermore, the various processes in upstream like exploration, production, and reservoir 
management are quite disconnected. The absence of synchronicity between these activities makes it 
difficult to develop global strategies to improve the industry. Data from one process may be useful in 
anticipating the results of another process, hence there should be a global platform that integrates data 
from all processes. Real-time insights drawn simultaneously from hundreds of wells can be used for 
decision-making regarding the maintenance and operations of the reservoir. There are a few barriers 
like high research and development costs, aversion to change and high levels of risk. With open 
collaboration and knowledge sharing mindset at an industry-level, new opportunities can be identified 
easily, and existing facilities can be managed effectively. Collaboration starts with integrating the 
domains of the industry, like promoting collaborative efforts from geologists, geophysicists, 
petrophysicists, reservoir engineers. Next step is to collaborate on the planning and operations side. 
Once the processes and systems of a firm are integrated, the next step is to promote collaboration 
among the competitors in the industry. Open source is the key to innovation in the software industry. If 
the data is made available to all the stakeholders and the academia, the pace of innovation will 
definitely increase. If collaborative efforts are shown by the competitors in the industry, then the 
growth of AI-assisted decision making is certain. 
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