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ABSTRACT

Deterministic history matching is the process of calibrating a single geological model to match the historical
production and reservoir characterization data. The methods presented in this paper aim to address the history
matching problem through progressive integration and reconciliation of all data types. The methodology
combines data analytics with intelligent visualizations to swiftly integrate datasets and progressively advance
the history matching process. We used a machine learning (ML) algorithm to detect data outliers and exclude
anomalies. Applying a fixed window average allowed us to validate the internal heterogeneities of the
geological model using core data features. We used a pattern recognition algorithm to create homogeneous
groups of wells and create a map of connected reservoir regions (CRR) to assess the spatial permeability
distribution adequacy of the geological model. We used a spatial Pythagorean search algorithm to detect the
causes of the well productivity problems. Our methodology helped rapidly integrate the pressure dataset,
thereby reducing the history matching time and computational requirements. It also helped us rapidly improve
the well performance, along with prescriptions of potential causes. In our example, the spatial Pythagorean
search recommended a review of the permeability field and input perforation intervals. Furthermore, we
determined that the core data consistent with the internal architecture of the geological model resulted in an
improved match of historical formation testing and sampling (FTS) pressure data. The presented methodology
allowed to rapidly quality check the geological model’s spatial connectivity, the result of which was applied to
update the permeability field of the static model. Using CRR maps during history matching helped make the
same changes across groups of similar wells. Our visualization interface allows both time-based (e.g., water-cut,
datum pressure) and depth-based (e.g., FTS, PNL, mobility, PTA) parameters to be displayed, permitting fully
integrated decisions regarding the required modifications. We found that integrating all measured reservoir
characterization information helped minimize the uncertainty in the proposed history-matched model. The
proposed methods improve the history matching process through dataset integration and validation. Leveraging
holistic data visualization and ML algorithm, our novel methodology helps establish a reliable reservoir model
by integrating geological and engineering datasets and progressively improving the history match. The methods
described can be incorporated into an assisted history matching application.

EXTENDED ABSTRACT

Literature review

Reed et al. (1968) proposed one of the earliest documented practices of history matching. Since then, there have
been four generations of history matching philosophies: (i) manual deterministic, (ii) automatic deterministic,
(iii) automatic stochastic, and (iv) big loop.

Manual deterministic history matching requires trial-and-error approaches to history-match a single geo-model
realization of the reservoir. Because it requires a trial-and-error approach, it is time-consuming. Automatic
deterministic history matching is motivated by the intent to remove the trial-and-error process and provide a
systematic approach, where a computer can autonomously arrive at a reservoir property description that matches
the field performance data. The key contributors to the second wave were Slater et al. (1971), who introduced
using gradient descent; Soldrzano et al. (1973), who introduced parameterization; and Chen et al. (1974), who
introduced the optimal control theory, where permeability was parameterized as a function of distance to control
wells. Parameterization establishes a mathematical relationship between known and unknown parameters and
indicates that once a few parameters are known the remaining unknowns can be determined. These studies were
based on models with 4-50 grid blocks. A limitation of the automatic history matching approach is that, as the
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number of model cells and parameters in the objective function increase, the number of simulations runs
required to compute the derivative of the cost function n*(M+1) becomes inhibitive.

After slow progress in the development of automatic history matching with deterministic models, during the
1990s, stochastic modeling approaches were developed (Guidicelli et al. 1992; Tyler et al. 1993; Calatayud et al.
1994; Jimenez et al. 1997). Here, the main philosophy was to generate several possible geological realizations to
detect one or more realizations with property distributions that yield an acceptable match of field performance
history. However, a challenge in the stochastic approach (stochastic here refers to multiple geologic realizations)
is that a suitable geological realization may require up to several hundred or thousands of samples before
detection (Stephen et al. 2012). Furthermore, many of these realizations may have only minor incremental static
property differences, resulting in indistinguishable dynamic responses. A more critical problem occurring in the
workflow is that this approach fails to recognize that a mismatch between simulated and observed data may not
always stem from a geological model problem.

In the last decade, the term “big loop" history matching was coined and trade-marked by Emerson. It is an
efficient iterative modeling loop comprising coupled geo-modeling, optimization, and simulation tools. An
example of the big loop workflow is the Intersect-MEPO-Petrel interaction (JPT Staff 2006; Kaleta et al. 2012).
Intersect, or any other simulator, performs the numerical simulation, and MEPO performs parameterization,
statistical analysis, and optimization. Then, Petrel is triggered to generate new geological realizations based on
the parameter settings identified by MEPO to help minimize misfit errors. Big loop is applied to evaluate the
impact of both static and dynamic uncertainties (Kaleta et al. 2012).

The challenge with the big loop approach is that the input data may not be adequately characterized to
effectively capture the field performance data to be history-matched. Joosten et al. (2011) stated in their paper
that “Features of which we have no indications of their existence could easily dominate the behavior of our
entire system (reservoir).” This significant uncertainty is one of the main reasons why automatic methods for
history matching have had limited success after extensive development. Automatic parameter estimation works
only once the correct set of parameters is established. Accordingly, the geological model captures the relevant
features of the physical system it is supposed to represent. For example, a producer yields a high water cut
because of a high-permeability streak that is a few feet thick between the producer and adjacent injector. If the
input logs and core data do not capture this high-permeability streak, an infinite number of geological
realizations cannot replicate the expected water breakthrough. Kaleta et al. refer to this as “under-modeling”
defined as “necessary but missing characterization in the geological model.” The engineer must manually
establish such a-priori characterization in

the geological model and calculate the permeability value of the created feature, considering it as an
optimization parameter (Van Doren 2012).

Recent trend in history matching is post-conditioning geological models, constructed either using numerical
(Ludvigsen et al. 2015, Kayode et al. 2017) or 4D seismic data Stephen et al. (2012). According to Stephen et al.
(2012), “Seismic history matching is the process where we use time-lapse (4D) seismic as conditioning data in
addition to more conventional production data as part of history matching. 4D seismic offers spatial
information

that is somewhat missing from production data, and by integrating this data, history matched models will then
give a more accurate representation for forecasting.”

A key benefit of seismic-assisted history matching is alleviating non-uniqueness problems by eliminating some
of the statistically probable solutions (Kazemi and Stephen 2011). This is because the inter-well information
obtained from seismic data helps ensure the quality of the statistically derived inter-well property distribution.

History matching has evolved over the last six decades in terms of computational complexity, size of the
geological model, and number and types of historical data used during the calibration process. As revealed in the
literature review, history matching is treated as a post-conditioning problem, where a geological model is built
independently from the core and logs and subsequently calibrated to pressure and production data. Academic
research on solving this post-conditioning problem has been rapidly expanding in a direction that is impractical
for routine deployment in the industry. This is because academia focuses on the continuous improvement of
science, whereas the industry considers the cost implications of adopting improved science.

For example, automatic history matching requires several thousands of simulations derived experimentally,
making it expensive and prohibitive in terms of computation, storage infrastructure, and simulation runtime
(Denney 2003; Doren et al. 2012; Dehghan et al. 2014; Hutahaean et al. 2018). Thus, it is impractical for
industrial applications even for large operators with massive computing clusters.
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This study aims to present an alternative history matching philosophy involving the construction of
preconditioned reservoir models, rather than conventional geological models. The assumption behind the novel
history matching philosophy is that “If the geological model approaches a perfect representation of the
subsurface, and dynamic, engineering, and production data are without anomalies, and if the numerical
description of the physical phenomenon is exact, there would be no need for history matching.”

In this study, we introduce the term preconditioned reservoir models as an alternative to classical static models.
Our assumption is that a single preconditioned reservoir model can achieve a history-match faster than
numerous plausible realizations derived only from cores and logs.

We build a hypothetical “truth” case model, and then use data from it to derive models that match it using
standard geo-statistics and more intelligent methods.

Fig. 1 shows the key characteristics of history-matching practices that have varied over the decades,
highlighting the key contributors to each era.
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Figure 1:Summary of key history-matching characteristics and key related studies over historical timeline

Methodology description

While stochastic-based history matching relies on statistics and probability to generate a band of history-
matched models, deterministic history matching relies on the experience of an engineer aided by data analytics
and visualization. The proposed methods utilize data analytics to provide engineering insights into the model,
production, and engineering data issues. The history matching improves when these issues are fixed.

Rather than presenting a software or field example, this study describes useful artificial intelligence (Al)
functionalities using hypothetical model examples.

A hypothetical reservoir was created having three heterogeneity regions shown in Fig. 2a. Using sequential
Gaussian simulation, and the parameters in Table 1, porosity and permeability were populated as shown in Fig.
2b and Fig. 2c.

Figure 2: (a) Conceptual depositional facies map for the hypothetical reservoir. Region-1, Region-2, and Region-3 are
colored red, green, and blue, respectively. (b) porosity and (c) permeability models

Region-1 Region-2 Region-3
Min Porosity/Permeability 0.05/0.1 0/0.1 0/0.1
Max Porosity/Permeability 0.2/2500 0.15/1000 0.1/300
Mean Porosity/Permeability | 0.15/1000 0.1/100 0.05/50
SD Porosity/Permeability 0.02/875 0.02/50 0.02/2
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Table 1—Input parameters used to distribute porosity and permeability in the hypothetical model.
Five petrophysical rock types (PRT) were assumed based on the hypothetical Winland equation expressed in
Eq.1. The PRT bands are reported in Table 2, and 3D distribution of PRT is shown in Fig. 4.

R35 — 1O(0.935+0.245*loglo(permeability)+0.314*log10(porosity*100)) (1)
PRT1 PRT2 PRT3 PRT4 PRTS5
20<R3s5<40 40 <R35< 60 60 < R3; <90 90 < R35<120 Rs; > 120

Table 2: R35 bands for hypothetical PRT models
Water saturation was distributed into the hypothetical model using Eq. 2.

Pcx x
s, = 10003-(0.7:10g100)) (2) The J function is defined as | = —‘/; 3).

gcos6

where Pc is the capillary pressure defined as P, = 0.433Ayh (@)

where Ay is the difference in specific gravity between oil and water and h is the positive height above the free-
water level (FWL). In this study, the FWL was assumed to be 10800 fts and Ay was assumed to be 0.3. acos8
indicates the wettability preference and is assumed to be 13. Fig. 5 plots water saturation versus height above
the FWL colored with respect to the PRT and 3D water saturation map.

b

s

Figure 3: (a) 3D distribution of PRTS,WEBj”\-Nater saturation versus HAFWL for all cells and (c) 3D water saturation map in
the hypothetical model

Then, some wells were defined in the hypothetical 3D model (Fig. 4a) to obtain the core porosity, permeability
and rock-type. Note that the hypothetical model has only 10 layers, and each well is cored in only few of these
layers. Therefore, the amount of core data is limited. Fig. 4b shows the porosity vs. permeability plot of cored
data colored with respect to the PRT. Finally, Fig. 4c shows the full set of wells (producers and injectors)
defined in the hypothetical model.

a b c

Permeability (mD)
g

Figure 4: (a) Location of cored wellé, (b) Core porosity versus permeability colored by PRT; and (c) Full set of wells
containing the producers and injectors

Production and injection were conducted for six years, Fig. 5 shows the periodic datum pressures of the wells.
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Figure 5: Periodic shut-in pressures for all producing wells in the hypothetical model

Typically, a simulation study begins from the geological modeling phase, using core and log data obtained from
wells to create a 3D permeability field. In some applications, facies or seismic data are used as trends, or a
purely statistics-driven approach, called sequential Gaussian simulation (SGS), is adopted when such data are
not available. Then, the engineer receives the static model and calibrates it with respect to the pressure and
production data through a process termed history-matching.

Using the cored data obtained from the wells shown in Fig. 4a, a geological model scenario using SGS was
created. The permeability and porosity fields are shown in Fig. 6.

Figure 6: (a) Porosity and (b) permeability model derived from core data using SGS

Because the R35 equation (Eqg. 1) and bands (Table 2) are assumed to be derived from special core analysis
(SCAL) conducted on cored data; they should remain the same for any geo-model realization that is built from
the same set of core data. Consequently, the R35 and band were used to calculate the PRT and water saturation
(sw) for the SGS model. Fig. 7 depicts a comparison between the PRT for the topmost layer in the SGS and
original hypothetical models. It is observed that the PRT at the cored well location is the same for all wells;
however, the spatial occurrence of the PRTs is different in the SGS compared with that adopted in the original
model.

Figure 7: Comparison between PRT of the (a) SGS model and (b) original hypothetical model. This comparison indicates
that PRTs remain the same at cored well locations while spatial distribution differs

In other implementations thoroughly documented in the literature (e.g., Amaefule et al. 2013; Johnson 1994),
porosity and permeability can be predicted at some of the non-cored wells if these wells have the requisite log
measurements, such as density, sonic, and neutron, which introduces additional cost of drilling but could
provide more control data for geological modeling. The production-injection constraints, relative permeability
and PVT tables from the base case hypothetical model were incorporated, and the SGS model was simulated.
Fig. 8 plots the pressure matches among the producers.
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Figure 8: Welli-rby-well p;éssure match plot for the SGS model

It is observed that some wells, especially in locations where the permeability field was different from the
hypothetical model, exhibited a poorer fit between the simulated and historical pressures. Several SGS models
were created by varying the variogram range hoping that a scenario that reasonably fits the historical pressures
of all wells could be obtained. For multi-scenario evaluation, a pressure misfit co-efficient was defined as the
percentage of the total pressure data that is matched within an absolute difference of 20 psi. Fig. 9 shows a few
SGS realizations and corresponding misfit coefficients.

Variogram ran Variogram r&
Misfit coefficient =2 Misfit coefficient

Figure 9: Multi-realizations of SGS models and their corresponding misfit coefficients

Misfit coefficient =388

Using the preconditioned modeling approach proposed in this study, we begin with the available pressure data
and derive insights that can be incorporated into the static modeling phase. The theoretical foundation for this
was laid down by Kayode and Stephen (2023). This new generation of history-matching philosophy termed
preconditioned modeling, proposes the following 5 steps:

Time-slice multivariate Gaussian distribution for pressure anomaly detection. There are various potential causes
of anomalies in the historical pressure database. (i) The pressure data are not stabilized values. (ii) Stabilized
pressure data not converted into reservoir datum equivalent. (iii) Bottom-hole flowing pressure recorded as
static pressure, etc. When the pressure of an individual well is plotted, it may be difficult to spot these
anomalies; however, when the collective dataset is plotted, an Al anomaly detection algorithm can be employed
to flag possible data anomalies Kayode et al. (2023). Fig. 10a shows the static pressure dataset collected using
our hypothetical model (shown earlier in Fig. 5), showing the red-colored data points flagged as anomalies.
Note, however, that the flagged data points are not necessarily erroneous; the flag signals the engineer to further
assess the data points because they look suspicious in relation to the other data points. The goal of this first step
is to help the engineer avoid the trap of later trying to history-match the possibly erroneous pressure data. In the
present discussion, because these data points were obtained from the hypothetical model simulation, we know
that they are not erroneous; therefore, we left them in our dataset.

Clustering of historical datum pressure using a pattern recognition algorithm. An Al pattern recognition
algorithm identifies groups of wells with similar trends and magnitudes of historical pressures. A description of
the algorithm was discussed in a previous study conducted by Kayode et al. (2023). Fig. 10b reveals six clusters.
This clustering does not necessarily imply a lack of communication between clusters. It simply implies that,
within each cluster, wells are in a near-instantaneous communication; there may be additional inter-cluster
communication as well.
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Figure 10: (a) Red-colored datapoints flagged as anomaly, (b) Groups of wells exhibiting similar trends and magnitudes of
historical pressures

The Al module outputs a field map depicting all well locations color-coded according to the group they belong.
It creates closed polygons around each group of wells, termed as connected reservoir regions (CRR), Fig. 11b.

a

-
-

] -
-

Figure 11: (a) Well locations colored by pressure group and (b) closed polygons around each well group

Analysis of core data to determine intra-reservoir architecture. This is achieved by plotting the core permeability
versus core depth, from which an Al module delineates zones of the reservoir that have significant permeability
contrast. This is accomplished by creating a plot of average permeability within a constant reservoir thickness
and applying a user-defined minimum contrast ratio to delineate intra-reservoir zones. The red curve in Fig. 12
shows the results of 100ft interval averages, and the vertical lines are the boundaries where the trend of the red
curve shows significant changes.

Permeability (mD)

Depth (ftss,

Figure 12: Intra-reservoir architecture derived from core permeability data

During geo-modeling, the zones defined in step-4 and CRR polygons established in step-3 are incorporated.
CRR are used as spatial containers, whereas zones are used as vertical containers. Each zone can be further
subdivided into layers as required. Only core data obtained from a well situated within a given CRR are used to
distribute the 3D permeability within that CRR. Within each CRR, only cored data within a given zone are used
in the permeability distribution within that zone, aiming to replicate the zonal core data statistics within each
model zone. The geo-model is reviewed and refined until the constant interval average signature in the 3D
model adequately matches that of the core data. Fig. 13a-c is a comparison of the hypothetical reservoir, its SGS
based model, and its preconditioned model. It is observed that the preconditioned model has a better visual
semblance with the hypothetical reservoir than the SGS model. Furthermore, Fig. 13d shows a better match of
the intra-reservoir architecture of core data (red) by the preconditioned model (black) than the SGS model

(green).
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Figure 13: Permeability model of (a) hypothetical reservoir, (b) SGS model and (c) preconditioned model of the reservoir,
(d) 100ft window average of core data (red), SGS model (green) and preconditioned model (black)

Fig. 14 shows the comparison of simulated pressure from the preconditioned model with observed pressure, it
depicts a better fit than the equivalent plot for the SGS model earlier shown as Fig. 8.

| \ =} = =| \ I

Figure 14: Well-by-well pressure match of wells in the precondifi_oned model

NB: space limitation imposed by AAPG extended abstract did not permit the inclusion of advanced visualization
for history matching in this discussion. The author can be contacted at babkay2000@yahoo.co.uk for the full
manuscript.

Discussion of results

The current practice of geological modeling requires the use of core (and sometimes log) data to create a model
of a reservoir’s geological understanding. The model performance was then compared to field performance data
to evaluate the misfit. The geological model was iteratively corrected in a post-conditioning process to reduce
performance misfit.

The proposed modeling approach advocates a departure from geological modeling to preconditioned
modeling, with the goal of creating a reservoir model (not a geological model) that will honor field performance
data. Geological modeling creates a model of the reservoir’s geology, whereas preconditioned modeling creates
a model of the reservoir’s performance.

The 80’s and 90’s experienced the rapid development and adoption of reservoir geo-statistics as an
approach to distribute well data in 3D space using purely probabilistic approaches. The 00’s and 10’s brought
stochastic inversion methods and cloud computing. In this work we capitalize on the recent advent of data
mining, Al, and ML frameworks to develop algorithms that extract insights from reservoir data for better
reservoir modeling. The incorporation of the Al-derived intra-reservoir architecture makes the reservoir model
phenomenological, in addition to being statistically representative, and could help improve the match of
historical RFT discontinuities.

Using CRR polygons to control the regional permeability distribution ensures that the connectivity pattern of the
reservoir model reflects observations from historical datum pressures. Conventionally, inter-well model
connectivity is one of the reservoir characterization items that we address using history matching (Yuhong et al.
2008). According to Yuhong et al. (2008), “It is quite obvious that once the facies model (reservoir connectivity
pattern) is wrong, it is very difficult to correct the model merely by tweaking variograms of porosity and
permeability.” An earlier study by Gomes et al. (2004) presented the same conclusions. They said “The
reservoir framework (facies) is in fact one of the most important steps to begin building the geological model.
One can use very complex techniques to populate the reservoir model properties, but if the framework is not
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correct, the model will not be reliable, history matching may not be achieved and field performance forecasts
could be wrong.”

During geo-model construction, a depositional facies model (where available) is used to guide the permeability
and porosity distribution in a way that captures the predominant reservoir connectivity trends. Some
observations regarding the depositional facies are included.

i Depositional facies description involves visual inspection and description of cores, and the results may
be influenced by the experience and interpretation of the geologist involved.

ii. The depositional facies description was conducted on the cored wells. In some cases, cored wells are a
fraction of the total set of development wells.

iii. Similar depositional facies at neighboring well locations do not necessarily indicate reservoir
continuity between these wells. This is because depositional facies could be comprised of several Petro-physical
facies, ranging from excellent permeability to excellent baffle.

iv. In some cases, depositional facies are distributed in 3D using geo-statistical algorithms such as
sequential indicator simulation (SIS). The resulting connectivity patterns may need to be reviewed during
history matching.

The use of CRR polygons derived from pressure clusters has the following benefits.

i Time-lapse static pressure data are a measurement, not an interpretation. Therefore, it is not subjective.
A pressure gauge was lowered into a shut-in well, and the stabilized shut-in pressure was measured and
corrected to the reservoir datum.

ii. In many countries, statutory government regulation states that each well should have at least one shut-
in pressure survey per year. This was used for reservoir management. This means that unlike the sometimes-
limited depositional facies data, historical datum pressure data are available for almost all development wells.

iii. If pressures measured on neighboring wells year-to-year follow a similar trend, then this is evidence
(unless otherwise proven) that there is instantaneous connectivity between these wells. If the measured pressures
exhibit different trends, then a barrier or baffle limits the connectivity between the wells. That is, the time-lapse
pressure measurement results from neighboring wells are indicators of the inter-well connectivity status.

iv. Seismic information is subsurface information that has the largest spatial resolution (Stephen et al.
2006). Kayode et al. (2019) demonstrated that CRR maps derived from pressure clusters were similar to seismic
acoustic impedance maps.

This study focused on the pre-conditioning of datum pressure and intra-reservoir architecture into geological
modeling, while other reservoir behaviors that could be used for model preconditioning include well-test
pressure transient, water-cut, etc.

Finally, on the one hand is the search has been on for an automatic history matching application that would be
fed with inputs to automatically output a band of history-matched model. Several researchers agree that a
functional and generalized application that does this is not feasible in the near term (Gupta et al. 2008;
Cancelliere et al. 2011). On the other hand, is manual history matching, in which the engineer receives a single
deterministic model, tends to do whatever is necessary for the model to match historical data. As discussed by
Little et al. (2006), “such model could result in unquantified uncertainty that could affect forecast results.”

The proposed use of the preconditioned model, Al-driven productivity review, pattern recognition, SPS, and
Geoprobe algorithms, together with the integrated visualization window, constitutes an advisory system for
building better models and for the detection of potential causes of model-history performance misfits.

Conclusions

(i) In this application example, a preconditioned model predicts 90% of the wells’ datum pressures prior
to history matching. The match quality of several realizations of the SGS ranged between 30 and 60%.

(ii) Al algorithms helped quickly identify wells that had productivity problems and the reason behind the
misfit data. (missing in this extended abstract)

(iii) After achieving satisfactory pressure matching using the Al Geoprobe algorithm, a well-by-well
pressure match is no longer necessary, resulting in significant time savings. (missing in this extended
abstract)
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