Geochemical Approach to Monitor CO₂ Plume Migration

Mohammad Alrowaie, Ranya Algeer, Muhammad Almajid, Zuhair Yousif

Aramco

Abstract

Problem/Objective: Carbon capture and storage (CCS) is one of the most effective solutions for reducing greenhouse gas emissions. CO₂ sequestration and CO₂ enhanced oil recovery (CO₂-EOR) are two major processes that can expose underground rocks to CO₂ The long exposure time of rock surfaces to the CO₂ or CO₂-saturated brines results in petrophysical, geochemical, and geomechanical alterations that affect the macroscopic CO₂ dynamics in the subsurface. Isotope geochemical analysis is beneficial when the objective is to monitor the reactions of CO₂ in the subsurface and to differentiate injected CO₂ from the native CO₂ derived from host rocks and free gases, or both. Experimental/lab work: In this study, several samples were collected and were geochemically compared to different end-members (i.e., atmospheric CO₂ native CO₂ and injected CO₂ to trace the emplacement/migration of the injected CO₂ plume in the carbonate strata. Gas composition analysis of the pressurized gas samples was conducted using gas chromatography. The stable isotopic composition of the gas sample components is measured by GC-IRMS (gas chromatography - isotope ratio mass spectrometry). The precision of the measurements must be $\pm 0.2\%$ for carbon isotopes. Measurements are reported in delta notation as part-per-thousand (%) variations in atomic $^{13}\text{C}/^{12}\text{C}$ relative to the VPDB international reporting standard. Results: The results indicate that the CO₂ isotopic values measured from the native CO₂ in the strata are enriched in 13 C (δ^{13} C- 13 C- 13 C) for their isotopic composition values. The injected CO₂ is characterized by a depleted 13 C (δ^{13} C-CO₂ = -10‰) value. The produced CO CO₂ gas samples after CO₂ injection compromise of different carbon isotopic values of CO₂ ranging from -8% to -10%. Mass-balance calculations indicate that the produced gases contain 67 to 15% of the injected CO₂. The vast percentage range of injected CO₂ in the produced samples indicates a variation in the effectiveness of CO₂ displacement. The measurements could also be correlated with other factors contributing to subsurface CO₂ migration within the rock, such as fractures, to better differentiate zones impacted by the CO₂ from unaffected zones. Novelty: The study demonstrates that monitoring the movement of CO₂ in the rock with geochemical and isotopic techniques is an effective and less expensive approach. The isotopic technique aids in determining CO₂ plume expansion, identifying potential preferential flow paths, and conducting long-term time-lapse monitoring in any CO₂ injection.