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Summary 

This article describes the emerging technology of cloud computing and the opportunity for cloud 
computing to advance the practice of geoscience. We discuss the underlying technologies and industry 
trends and ability of cloud computing to provide average practitioners with the computational resources 
to solve a new scale of problems. We discuss our experience with deployment of a cloud-based 
solution for large-scale geostatistical problem solving and provide guidance to others looking at cloud 
computing for geoscience applications. 

Introduction 

The field of geoscience is increasingly involving complex theoretical models requiring compute 
intensive applications/algorithms to handle such complexity and huge data sets generated in the 
process (Kumar et al. 2012). Improvements in seismic measurement, well logging and laboratory 
analysis is producing new measurements and at higher resolutions than ever before resulting in 
upwards of gigabytes of data per well. New forms of analysis are required to process this large volume 
in data (typically while holding it in memory) and, while computational power is increases with each 
generation of hardware, the computational resources available to the average practitioner has kept up 
with the demand produced by emerging methods. Although supercomputing may be a solution for 
certain large-scale problems, the average practitioner (or even researcher) is not likely to have access 
to anything beyond a workstation-class desktop. 

Cloud computing is defined as a model for enabling ubiquitous, convenient, on-demand network access 
to a shared pool of configurable computing resources that can be rapidly provisioned and released with 
minimal management effort or service provider interaction (Mell and Grance 2011). Cloud computing 
provides for computational cost-efficiency through use of highly-utilized pooled resources. A Platform-
as-a-Service model provides users with the flexibility to access computing resources as needed 
(typically by allowing running software to create and manage run-ready virtual machines). Cloud-based 
software is typically delivered under a Software-as-a-Service (SaaS) model with a server-side 
application accessed by multiple clients. This client/server model is especially appropriate for 
geoscience applications that are likely to be largely dependent on centrally-stored large data sets. 

Theory 

Our experience with cloud computing is the result of a project with the goal of testing the performance 
of new geostatistical modeling methodologies to determine optimal workflows for various resource 
types. Our goal is to use real-world data sets significantly larger than those typically used in academia 
and to experiment with many combinations of workflow steps and parameters. We realized that existing 
platforms and conventional workstation resources would not be sufficient for this project and that cloud 
computing had the potential to provide required computing resources at reasonable cost. 
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In order to support our project goals we acquired the rights and source code to a custom software 
platform that was hosting geological data for about 10,000 wells utilizing cloud storage technologies. 
Over the course of a year we worked to significantly enhance the storage capabilities of the platform, 
and to add the capability to create an integrated task-based computational engine with an interface to 
the data. As of this writing we are beginning to use this platform for full-scale testing. 

The following section highlights several key learnings that may be of interest to geoscience 
practitioners, researchers, or scientific software designers. 

Examples 

Cost Analysis of On-Demand Cloud Computing 

In this section we analyze the cost of on-demand cloud computing in comparison to buying and 
operating in-house resources. 

There are many public cloud service providers including Amazon (AWS), Google (Compute Engine) 
and Microsoft (Azure) who provide similar services at comparable prices. We chose to work primarily 
with Microsoft’s Azure because of integration with development tools. Azure’s on-demand virtual 
machine pricing as of January 2014 can be found in Figure 1. 

Figure 1: Microsoft Azure Virtual Machine Pricing 

Microsoft Azure Virtual Machine Pricing 
Service Level CPU Cores RAM Local Non-OS 

Storage 
Price/Hour

(CAD) 
Annual Equivalent 

(CAD) 
A1 1 1.75 GB 224 GB $0.022 $193 
A2 2 3.5 GB 489 GB $0.095 $832 
A3 4 7 GB 999 GB $0.190 $1,664 
A4 8 14 GB 2,039 GB $0.380 $3,329 
A5 2 14 GB 489 GB $0.422 $3,697 
A6 5 28 GB 999 GB $0.844 $7,393 
A7 8 56 GB 2,039 GB $1.688 $14,787 

We find purchase costs for equivalent computers at about 2/3rd of the annual equivalent costs (an A2-
level machine would cost about $550 and an A7-level machine would cost about $10,000 to purchase). 
In corporate IT application, lifetime operating costs are typically estimated as at least equal to hardware 
costs (Morey and Roopa 2010) and the useful lifespan as 2 to 3 years. This suggests that cloud 
computing will have a lower total cost of ownership than an internal data center if computing utilization 
is below 68% (2-year lifespan) or 45% (3-year lifespan). We suspect utilizations are lower than this for 
most practitioner (and researcher) projects, particularly over the entirety of hardware lifespan. 

Of course, the real advantage to cloud computing is that properly parallelized code can be deployed to 
a far greater number of computers than normally available to practitioners. An analysis that would take 
100 days to run on a single machine could be run on 100 machines over one day. We expect this 
multiple-order-of-magnitude increase in the computing horsepower available to practitioners will drive 
major advances in geoscience over the coming years. 

Creating a Cloud Computing Platform 

In this section we discuss our experience integrating cloud storage with a task-based computational 
engine. 
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Data-intense geological modeling is an ideal application for cloud computing because of the data 
density and high computational requirements. This requires all data-intense calculations to be 
performed server-side. It should be noted there will likely still be requirement to access data from the 
client side for visualization, selection, data verification and other user-focused tasks. With large 
underlying data sets this can be a non-trivial task (i.e. allowing users to select from a list of millions of 
data elements without needing to download the entire element list). We found existing programming 
best-practices can deal with this problem if it is addressed as part of the design stage. 

In our primary field of interest, geostatistics, much of the practitioner and research code is written in 
Fortran, including hundreds of projects worth of code from University of Alberta’s Centre for 
Computational Geostatistics. This posed a challenge as Fortran is a legacy language largely 
unsupported by modern cloud platforms and the structure of the existing code was not conducive to 
functional integration. We pursued undertaking a major code conversion to a modern programming 
language, but deemed that solution cost-prohibitive. The most efficient solution was to slightly modify 
and compile existing Fortran code to command-line-callable executable programs. These programs can 
be installed on cloud servers and virtual machines and be employed within modern programming 
languages. 

A design goal for our testing platform was the ability to create, test and run new code independent of 
modifying the core application. Our original plan was to write the code in a specialized development 
environment on the desktop and build an interface to transfer this code to the cloud-based platform. 
However, we were able to create a client interface that allows for coding creation and execution, with 
access to a development environment and our full data object model, all within the web-based client as 
seen in  

Figure 2. This significantly simplifies our ultimate model testing process. 
Figure 2: Scripting Interface 

Data Storage and Access 

In this section we discuss developments in data storage and access technologies and implications for 
high-performance big data technical computing. 

E&P data is traditionally hosted in relational databases broken over many normalized tables such as 
the Public Petroleum Data Model (PPDM). Such databases are often called SQL databases because a 
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structured query language is used to reassemble the data in many related tables into a useful form. 
Because proper relationship design breaks up data into as many tables as required to avoid any 
duplicate data elements, complexity and of table structure and of queries required to extract data can 
be quite high.  

Figure 3 shows the query language required to extract the value of specific lab test from a specific depth 
of a specific well in a simple four-table relational database model of lab values. This complexity results 
in reduced performance for increasingly large data sets. 

Figure 3: Sample Table Structure and Query 

SELECT tblLogDataValues.LogDataValue 
FROM tblWellList INNER JOIN (tblLogDataType

INNER JOIN (tblLogDataReportList INNER JOIN

tblLogDataValues ON

tblLogDataReportList.[LogDataReportID] =

tblLogDataValues.[LogDataReportID]) ON

tblLogDataType.[LogDataTypeID] =

tblLogDataReportList.[LogDataTypeID]) ON

tblWellList.WellListID =

tblLogDataReportList.WellListID 
WHERE

(((tblWellList.WellUWI)="1AA092509213W400")

AND ((tblLogDataType.LogDataType)="Gamma") AND

((tblLogDataValues.LogDataDepth)=115)); 

Our original intent was to use a traditional relational database for data storage. However, despite 
optimization efforts it became apparent that there would be performance issues related to accessing 
data as we scaled up the database size and that a technical solution was required to remove the 
bottleneck. 

There is a new family of database technologies commonly referred to as Not Only SQL (NoSQL) 
databases that have been developed to meet the performance requirements of Big Data. Of particular 
relevance to geological modeling are document-oriented NoSQL databases such as MongoDB and 
CouchDB. These databases store data in a hierarchical format that in can be often resembles the 
natural structure of geological or production data and are far easier to implement in an object-relational 
mapping framework. A sample of a MongoDB document storing well lab data can be found in Figure 4 

A transition of lab data from MS SQL to Mongo DB increased search and retrieval performance by an 
order of magnitude and enabled us to remove a major performance bottleneck to meeting our testing 
goals.  
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Figure 4: MongoDB Document 

{{

"Well": "1AA092509213W400",

"Lat": "57.0118",

"Long": "-111.942",

"Name": "Bob 32",

"Type": "Completed",

"LogData": {

"Gamma": {

["Depth": "125", "Value": "28.760"],["Depth": "120", "Value": "26.365"],

["Depth": "115", "Value": "24.368"],["Depth": "110", "Value": "31.256"],

["Depth": "105", "Value": "33.125"]

}}},

{

"Well": "1AA123009212W400",

"Lat": "57.0131",

"Long": "-111.9338",

"Name": "Bob 26",

"Type": "Drilled",

"LabData": {

"Neutron": {

["Depth": "135", "Value": "11.2"],["Depth": "130", "Value": "8.7"],

["Depth": "125", "Value": "6.9"],["Depth": "120", "Value": "7.4"]

}}}}

Conclusions 

Emerging cloud computing technologies can provide geoscience practitioners and researchers with 
access to the computing needs required for data- and processor-intensive tasks. We determine that 
current cloud pricing suggests significant cost savings over conventional models at likely practitioner 
utilizations. We also make suggestions on how to implement legacy Fortran code into modern cloud 
projects and on use of emerging database technologies to handle large-scale data. 
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