# A Comparison of Plug-Derived, Probe-Derived and Crushed-Rock Permeability in Low-Permeable Shales: Examples from the Duvernay Shale, Alberta (Canada) 

Amin Ghanizadeh ${ }^{1}$, Santanu Bhowmik ${ }^{1}$, and Christopher R. Clarkson ${ }^{1}$

${ }^{1}$ Department of Geoscience, University of Calgary, Calgary, Alberta, Canada


#### Abstract

We compare different methods for determination of gas permeability in low-permeability Canadian shales. Furthermore, we analyze and discuss the effects of different controlling factors including porosity, TOC content, mineralogy, pore-fluid content and effective stress on permeability.

For the samples analyzed under similar pore-fluid content, probe-derived permeabilities $\left(3.8 \cdot 10^{-4}-2.7 \cdot 10^{-2} \mathrm{mD}\right)$ were consistently higher than pulse-decay-derived ( $8.4 \cdot 10^{-5}-7.6 \cdot 10^{-4} \mathrm{mD}$ ) and crushed-rock ( $3.7 \cdot 10^{-7}-5.9 \cdot 10^{-6} \mathrm{mD}$ ) permeabilities. Corrected probe-derived permeabilities for Overburden (NOB) pressure ( $1.5 \cdot 10^{-5}-5.6 \cdot 10^{-4} \mathrm{mD}$ ) were, however, comparable with the pulse-decay-derived and crushed-rock permeabilities. Crushed-rock permeabilities measured on cleaned samples ( $3.8 \cdot 10^{-5}-1.1 \cdot 10^{-3} \mathrm{mD}$ ) were up to more than two orders of magnitude higher than those measured on uncleaned samples $\left(4.3 \cdot 10^{-7}-5.9 \cdot 10^{-6} \mathrm{mD}\right)$. The gas permeability values measured for plugs and crushed-rock increased significantly with increasing porosity (2.5-6.6 \%), ranging between $3.7 \cdot 10^{-7}$ and $1.1 \cdot 10^{-3} \mathrm{mD}$. For the samples analyzed, the dominant pore throat diameters for gas $\left(\mathrm{He}, \mathrm{N}_{2}\right)$ transport could be well estimated from porosity and permeability data using Winland-style correlations.

\section*{Reference Cited}

Dunn, L., Schmidt, G., Hammermaster, K., Brown, M., Bernard, R., Wen, E., Befus, R., and Gardiner, S. The Duvernay Formation (Devonian): Sedimentology and Reservoir Characterization of a Shale Gas/Liquids play in Alberta, Canada. Presented at GeoConvention 2012: Vision, Calgary, Alberta.


