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Summary  

Cross-correlation based techniques are widely used for time-delay estimation in electrical engineering 
and in the processing of passive and active seismic data. We present an iterative cross-correlation 
based workflow to refine arrival time picks on microseismic data that were initially picked either 
manually or using a single-trace based algorithm such as short and long-term average ratio (STA/LTA). 
We then evaluate the performance of this workflow on both synthetic and real microseismic data using 
a Monte Carlo approach. The proposed workflow provides an arrival-time accuracy of •±0.5 − 1ms for 
both synthetic and real microseismic data examples considered in this study. 
 

Introduction 

Arrival-time picking is an important step in the processing of downhole microseismic data, since it 
determines the accuracy of hypocentre locations. Numerous algorithms that are applied to single or 
multi-channels are commonly used and widely discussed in the literature. Among the single-trace 
based algorithms, short and long-term average ratio (STA/LTA; Allen, 1978; Withers et al., 1998), 
modified Coppens’ method (MCM; Sabbione and Velis, 2010), modified energy ratio (MCM; Han et al., 
2009), phase arrival identification-kurtosis (PAI-K; Saragiotis et al. 2002; 2004) and Akaike information 
criterion (AIC; Takanami and Kitagawa, 1991; Sleeman and Van Eck, 1999) are well-known. These 
algorithms have been evaluated on both synthetic and real microseismic data in Akram et al. (2013). 
The performance evaluation of these algorithms shows that the accuracy and stability of these 
algorithms depend greatly on signal-to-noise ratio (S/N) of microseismic data. The single trace 
algorithm take no advantage of other traces in the array in arrival-picking. On the other hand, a multi-
channel algorithm takes advantage of the similarity of detected P- and S-wave microseismic signals for 
different sensors, and thus can improve the quality of time-picks. Cross-correlation is an example of a 
multi-channel algorithm that is widely used for time-delay estimation in electrical engineering (Tamim 
and Ghani, 2009), in the estimation of static corrections for surface seismic data (Bagaini, 2005) and in 
microseismic and earthquake data processing for event identification and phase arrival picking (Raymer 
et al., 2008; De Meersman et al., 2009; Eisner et al., 2008). 
 
In this paper, we present a workflow based on iterative cross-correlation for refinement of arrival-time 
picks. The proposed workflow is modified from an arrival-pick refinement procedure presented in De 
Meersman et al. (2009). Several real and synthetic data examples are used to evaluate the 
performance of the proposed workflow. The initial arrival-time picks, polarity and amplitudes are 
perturbed randomly and an error analysis on the picked arrivals is performed using a Monte Carlo 
approach. 
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Iterative cross-correlation based workflow 

The following form can be assumed for the microseismic data recorded at two different receivers 
(Bagaini, 2005) 

  ( )   ( )     ( )                                                                                   ( ) 
  ( )    (   )     ( )                                                                         ( ) 

where s(t) is the signal,   denotes time delay, n1(t) and n2(t) are the noise in the recorded data and a  
denotes the amplitude ratio of trace 2 to trace 1. The time delay is estimated from the lag at the peak 
value of the cross correlation between x1(t) and x2(t). Bagaini (2005) evaluated the performance of 
different time-delay estimators where reference traces obtained from various selection schemes are 
used. It is shown that the iteratively updating the reference signal provides better time-delay estimation 
than non-iterative schemes where reference trace is selected from sensors within the array or by simple 
stacking.  
De Meersman et al. (2009) described an iterative cross-correlation workflow for refined arrival picking 
(Figure 1). In this workflow, initial manually picked arrival-times are used to align the microseismic 
traces. Before the computation of stacked trace, all the traces are rescaled to equalize to the pre-event 
noise level. A stacked reference trace is then computed and correlated with all the traces to update the 
time-shift. This process repeats until the time delay converges to a user-defined threshold value (ε), 
which represents the optimal re-alignment of the data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Microseismic waveforms are typically accompanied with both amplitude and polarity variations 
considering the source radiation pattern. Additional waveform complexity comes from the amount of 
noise typically observed in the microseismic data. In many cases, one of the three components is 
noisier than the others in the recorded data. This workflow does not explain the case where both 
amplitude and polarity variations are present. Assuming that the complex analytical signal is used to 
address the polarity variations or phase shifts, the performance of this workflow might not be optimal in 
noisy datasets as shown in Bagaini (2005). 

Figure 1: Iterative cross-
correlation based workflow for 
refined arrival time picking by 
De Meersman et al. (2009). 

Figure 2: The proposed workflow, modified from De 
Meersman et al. (2009). 
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We propose the following modifications to the above workflow.  
1. Initial time-picks are estimated using one of the single-trace based methods, such as AIC.  
2. Microseismic traces are aligned and re-scaled to equalize the pre-event noise level which is the 

root-mean square (RMS) value in a user-defined noise window for each trace. 
3. A polarity check is then established on the dataset using the initial time-picks. In this step, all traces 

in each of data components are classified into positive and negative polarity groups of traces. 
4. To minimize the effect of noisy traces on the stacked pilot trace, a S/N weighting scheme is applied 

in trace stacking. The optimal pilot traces that honour data amplitude and polarity, are computed for 
both polarity groups of traces. 

5. These pilot traces are correlated with all traces in the corresponding data component. The main 
reason for this step is to ensure that no errors from polarity check are propagated into pilot traces.  

6. Following Arrowsmith and Eisner (2006), S/N weighted cross-correlation is computed to reduce the 
effect of noise on individual components on the time-delay estimation. Previously, trace based S/N 
weighting was used. In this step, whole receiver gather’s S/N (computed from the median S/N 
values of all traces in that data component) is used as weighting factor. The weighted cross-
correlation from all three components is 
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7. Time lag value is estimated from the absolute maximum of the S/N weighted cross correlation. All 
traces are then shifted using the time lag value. 

8. Steps 2 - 7 are repeated until the absolute lag value becomes lower than a pre-defined threshold or 
another stopping criterion such as maximum number of iterations. 
 

Since the cross-correlation method provides relative arrival-time information, a bulk time shift is applied 
if necessary to correct the onset times. The bulk time-shift is computed as follows 
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where S is the final weighted stack of positive and negative weighted stacks (S1+ and S1- respectively). 
We then use AIC to find the required bulk shift (if any) and apply this to all picked times. 

 

Examples 

Figure 2 shows synthetic data examples that were created using an 80 Hz minimum-phase wavelet and 
P-arrival-time information from one of the real microseismic picked events. The signal amplitude were 
perturbed by adding white Gaussian noise which was generated using MATLAB subroutine wgn. Figure 
2a and 2b show the waveform data with amplitude perturbations. The picked arrival-times using the 
proposed workflow are also shown. A Monte Carlo approach was used to evaluate the performance of 
our proposed workflow. The absolute errors between the picked and the actual arrival time were 
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computed for 100 realizations. In each realization, a different noise level was added in the input data 
and arrival times were perturbed using a normal distribution denoted as N(0,10) where 10 represents 
the standard deviation in number of samples. Figure 2c shows the absolute error histograms for the 
picked arrival times, the majority of which are picked with ±2-4 samples accuracy. Figure 2d shows the 
absolute error in the picked arrival times with respect to the S/N of the input data. It suggests that our 
workflow performs within the above-mentioned accuracy majority of the time for very poor S/N data and 
as can be seen in Figure 2, it provides high quality time-picks for medium to high S/N data. 

 
Figure 1: Performance and error analysis of our 
proposed time-picking workflow for synthetic 
data. a) and b) shows the quality of picked 
arrival times on the waveform data. The initial 
times are shown by cyan colored dots. The 
analysis window is shown by the green colored 
dots representing the lower and upper bounds. 
The red colored dots represent the picked 
arrival times using our proposed workflow. c) 
and d) suggest that the arrival times using our 
workflow can be picked in majority of times 
within an accuracy of ±2-4 samples. 

 
 
 
 

Figure 3 shows absolute errors (in samples) for picked arrival times where the input data also has 
polarity variations. The polarity of the data is flipped for the first five traces in the record. Similar to the 
previous case, both the initial data and the arrival times are perturbed with random noise. Although 
majority of arrivals are picked within the same time accuracy as is seen in the previous case, the 
performance of the workflow slightly deteriorates. One of the factors that may affect the picked-time 
accuracy is the amount of added random noise and the complex changes in the waveforms. As in 
majority of the cases, the initial input data studied here for time picks has S/N below 0 dB which 
suggests that the noise level is higher than the signal level. 

 
 
Figure 2: Performance and error analysis of 
our proposed time-picking workflow for 
synthetic data with polarity and amplitude 
variations. Majority of the picked errors 
remain within ±2-4 samples as was the case 
in Figure 2. However, the accuracy is slightly 
deteriorated from what is observed in Figure 
2. 

 
We now apply this approach to P-wave arrival time picks for real data from a two-stage fracture 
treatment. The monitoring well is approximately 150m south and 350m east of the treatment location. 
The data were acquired with a sampling interval of 0.25ms using 12 three-component receivers, with 
10m inter-receiver spacing. We have chosen this dataset because all three components have a 
different S/N (Figure 4).  
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Figure 3: Real microseismic data (un-rotated) examples showing different S/N for each component. 

Figure 5 shows the P-wave arrival time-picks using our proposed iterative cross-correlation based 
workflow. Here, we have also flipped the polarities of the first six traces and added the random 
perturbations in arrival time in a similar way described for synthetic data examples. The correct arrival 
times are identified in all the cases. However, the precision of picked arrival-times becomes less when 
the data S/N is very low.  

 
 
Figure 4: Example of arrival time-picks using our 
proposed workflow on real microseismic data with 
various levels of noise add-back. The description of 
colored dots is same as shown in previous figures. 
Here, manually picked times are shown with yellow 
colored dots. 

Conclusions and future work 

We have presented an iterative, cross-
correlation based workflow for enhanced 
arrival time-picks. We have tested the 
performance and error analysis of this 
workflow using both synthetic and real 
microseismic data examples. In the 
evaluation of algorithm performance, we 
perturbed the amplitudes, polarity and the 

initially picked arrival times to present a realistic scenario in which the quality of picks is affected by the 
poor S/N of data and the inaccurate initial arrival times. For the cases considered, synthetic data yield 
arrival time picks within ±2-4 samples accuracy. However, the introduction of polarity flips in the 
synthetic data deteriorates the quality of picks for poor S/N data. Similar accuracy scale is observed for 
real microseismic data which was kept un-rotated to evaluate the performance of our algorithm in poor 
S/N and complex waveforms. 
Future applications of this approach will make use of ray-centered coordinate rotation to enhance both 
the S/N and the quality of waveforms that it is expected from the cross-correlation. This will help to 
ensure similar performance for both P- and S-waves. 
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