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Summary 
 

Uncertainty in a migration based approach to surface microseismic monitoring occurs in two ways: 
uncertainty in the validity in detected event and uncertainty in the estimated position of the event. 
Synthetic modeling and comparison to case studies show that sign-to-noise-ratio is a key indicator of 
both types of the uncertainties. 
 

Introduction 
 

Unconventional resource plays demand intense drilling and reservoir stimulation programs, and 
economic exploitation requires these resources be employed efficiently. Microseismic  monitoring  can  
provide  important information  to  help  optimize  well  placement  and stimulation programs (Maxwell, 
2010). Microseismic monitoring with surface arrays offers several advantages over borehole 
monitoring. Surface arrays do not require dedicated monitoring borehole, they offer a much larger 
field of view allowing long laterals to be monitored in their entirety and consistency (Duncan and 
Eisner, 2010). Moreover, surface deployment of large 2D or 3D arrays captures a large portion of the 
emitted microseismic wave field, enabling well constrained event imaging with only compressional 
waves significantly reducing the sensitivity to velocity model assumptions.  Furthermore, these 
arrays are well disposed for permanent monitoring of multiple wells. 
 
The primary challenges in surface monitoring are: 1) increased distance between event hypocenter 
and receiver reduces signal size, 2) increased noise levels at surface. While borehole monitoring 
schemes typically rely on detection of events in the recorded traces followed by event location, the 
reduced signal-to-noise-ratio (SNR) at the surface does not generally allow detection of signals in the 
unstacked data (e.g., Zhebel et al., 2010). One approach to this problem is to apply a migration 
based imaging scheme to simultaneously improve the SNR and to position events at their proper 
location. In this approach one must then rely on  signal  detection  after  migration  which  leads  to  
two levels  of  uncertainty: 1)  uncertainty  in  the  detection  of signal, 2) uncertainty in the localization 
of the event. 
 
In this paper we present an analysis of both types of uncertainty using synthetic modeling to illustrate 
the performance  characteristics  of  the  migration  process  in terms of signal detection and false-
alarm rates, along with uncertainties  in  positional  estimates.  Examples from two case studies will 
illustrate that this kind of performance is achievable in actual monitoring surveys. 

 
Theory and/or Method 
 
Imaging Method 
 
Our migration based approach to microseismic imaging involves three steps:  downward continuation 
by beamforming, followed by event detection, then event localization (estimation of event location and 
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timing). Beamforming is accomplished by a progressive scan of potential hypocenter locations in the 
subsurface. For each potential l o c a t i o n , d i f f r a c t i o n    curves f o r  c om pr es s i o na l  waves are 
computed, assuming a known velocity field. The recorded data traces are then summed across  
the array along the diffraction curves for the entire trace length. This beamformed   trace f o r ms  a  
cont inuous e s t i m a t e  o f  t he  potential source at the subsurface location over the course of the 
recording. 
 
As microseismic events are transient events, the next step is to identify and extract potential events 
from the continuous beamformed trace. Potential events are detected by an amplitude ratio test. The 
ratio of RMS amplitude within a sliding event window (the signal estimate) to the RMS amplitude in a 
trailing window (the noise estimate) is used to compute an  es t imated  S N R . If the SNR exceeds 
a specified threshold, the event window is marked as a potential trigger. 
 
Once all triggers are detected over all potential hypocenter locations, the catalog is analyzed to 
localize the event. Due to the finite extent of the array and the restriction of the array to the near  
surface,   the  point   response   of  the migration  will  cause  a  single  event  to  produce  triggers 
spread  across  many  subsurface  locations.  For a surface array with an aperture twice the depth of 
interest, this point spread function will be elongated in the vertical direction by roughly a factor of 
three compared to the horizontal response. This elongated shape is primarily an expression of the 
trade-off between time of the event (i.e., origin time) and depth of the event when origin time of the 
event is unknown (Eisner e t  al., 2009).  The actual s ize of this response is determined by the 
frequency of the received signal, the velocity of the overburden, as well as the array configuration.  
The localization step consists of identification and evaluation of triggers related to a given event and a 
secondary diffraction sum along the time/depth trade-off trajectory (Duncan et. al., 2010).  This 
secondary diffraction  sum,  allows  us  to  estimate  the  timing  and location  of  optimal  energy  
focus  and  hence  the  event position. 
 
Uncertainty 
 
Leaving aside uncertainty in the assumed velocity model, uncertainty arises in two primary contexts 
in this process. The first is in the detection step: How certain can we be that  the  detected  events  
are,  in  fact,  true  microseismic events and not spurious noise?  The second relates to the event 
localization: How accurate are the positional estimates, especially in the vertical direction? 
 
Detection   theory p r o v i d e s    some i n s i g h t    into t h e  f i r s t  question (Johnson and Dudgeon, 

1993). The basic test in detection theory is the choice between two hypotheses: H0 = signal absent, 

and H1   = signal present.  The Nyman-Pearson lemma (1933) shows that it is possible to construct 
a   likelihood   ratio   test   to   specify   this   choice   which minimizes the chances for incorrectly 
choosing H1   when there is no signal present (a false-alarm).   The likelihood ratio  test  can  be  

equivalently  specified  by  a  sufficient statistic which is compared to some threshold value, where 
values of the statistic below the threshold indicate no signal present,   and   values   above   the   
threshold   indicate   the presence  of signal. By specifying the test in this manner one effectively 
fixes the probability of false-alarms in the system. In general, it is not possible to choose a 
statistic/threshold combination that reduces the probability of false-alarms to zero, so one must 
accept some probability of false-alarms.  In practice, one must balance the false-alarm probability 
against the probability of failing to detect valid signal. 
 
The SNR value we compute in the detection phase is such a sufficient statistic for a likelihood ratio 
test.  The actual false-alarm probability in the system is determined by the distribution of noise after 
beamforming.  If, for example, one is to assume the noise is Gaussian and the trailing window RMS 
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measure is a valid estimate of the standard deviation of this distribution, then a SNR threshold value 
of 2 would result in a false-alarm probability of ~2.5% (the approximate cumulative probability of the 
Gaussian distribution above 2 standard deviations). Thus, for every 1000 windows examined where 
there is in fact no signal, we should expect 25 false-alarms with SNR greater than 2. If we restrict 
ourselves to windows with SNR greater than 3 (false-alarm probability of ~0.1%), we should expect to 
see only 1 false-alarm. Therefore, under the assumptions listed above a SNR increase results in a 
decrease of the likelihood of a given trigger being a false-alarm. 
 
While it is difficult to assign a certainty to an individual detected event, detection theory does supply 
some useful insights to the event catalog as a whole. First, we know that the event catalog will contain 
some percentage of false- alarms. Second, certainty in the event should increase with estimated 
SNR. 
 
Estimating an event location ultimately comes down to selection of an optimal focusing point. 
Uncertainty in this estimate is driven by the effect of noise in this selection process. While the 
particulars of how noise interacts with the selection process are specific to the selection algorithm, 
we can predict that noise will tend to move the estimated location along contours of the migration point 
response and that the impact of noise should decrease with increasing SNR. 
 
Synthetic Modeling 
 
In order to assess both types of uncertainty, we constructed a s y n t h e t i c  data s e t  w h i c h  w a s  
u s e d  i n  o u r  i m ag i n g  algorithm to locate events with varying amounts of noise. 
 
The synthetic data set consisted of a surface array of 1000 channels  arranged  in  a  radial  pattern  
of  8  arms  equally spaced  in  azimuth.  Each arm consists of  125 channels spaced at 100 feet 
with an initial offset of 1000 feet from the center of the array resulting in a maximum offset of 
13,400 feet .  100 events at  a depth of  10,000 feet  and located near the center of the array were 
modeled using a 30 Hz center frequency minimum-phase Ricker  wavelet with a constant 
moveout velocity of 12,000 feet/s. 
 
For a range of input SNR levels (0.02-20), Gaussian noise was  added  to  the  modeled  data  and  
imaged  with  the migration routine with the detection threshold set at 2. The event catalog output by 
the migration was then compared to the known o r i g i n  t im es  and  loca t ions  o f  the modeled  
events. A detected event with an origin time within 10M of a modeled event was considered a true 
detected event (a hit) while all other events are considered false-alarms. 
 

 
 
 
 
 
 
 

 
Figure 1:  Count of detected events as a function of SNR after migration.   Detected  events  
matched  to  modeled  events  are shown  as  hits,  events  without  a  match  are  shown  as  
false alarms. 
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Figure 1 shows number of hits and false-alarms for each output SNR level.  For  SNR  >  2,  all  100  
of  the  seeded events  were  detected.  For SNR < 2, the detection rate rapidly drops, effectively 
reaching zero for SNR < 1. This behavior suggests that we can use SNR as an indicator of 
reliability in the performance in the algorithm. Above some SNR threshold val id  events are 
reliably detected, while below this threshold valid events are missed. 
 
For all  output SNR levels, the number o f  false-alarms remains approximately constant at a value 
of 10. While constancy is expected from detection theory, this value is much lower than one might 
expect for a 2.5% false-alarm rate. The 100 events were seeded at 2 second intervals into a 200 
second long data set sampled at 4ms. In the triggering routine,   the e v e n t  w i n d o w    moves   
forward   sample b y  sample. Thus, we examine 50,000 potential triggers and should expect 1250 
false-alarms in the triggering phase. However, the ten false-alarms shown in Figure 1 are those that 
were triggered but also passed the event localization step. Part of the event localization step is a 
requirement that the triggers show consistency over the time/depth trade-off trajectory. If the 
algorithm fails to find this consistency, the trigger is discarded.  Thus we add further constraint 
against false-alarms. 
 

 
 
 
 
 
 

 
Figure 2:  Standard deviation of positional errors as a function of SNR after migration. 
 
Figure 2 shows the standard deviations of positional errors computed from the matched events (hits) 
shown above. Not shown in the figure are the average errors, for SNR > 1 average   errors   are   very   
close   to   zero   for   all   three dimensions indicating the estimates are unbiased. For SNR > 1, we 
see an exponential decline in variability of the errors, with horizontal and vertical uncertainties 
converging to near zero for very high SNR values. Variability in X and Y are approximately equal and 
2-3 times smaller than variability in Z. The rate of decline in variability in all three dimensions is 
approximately the same. The estimates with SNR < 1 should be discounted  as it contains only 2 
hits, and origin time errors associated with these two hits are significantly larger than the other hits 
(50ms vs. 5ms), indicating these are not likely valid matches. 
 
As predicted, sensitivity to noise in the vertical direction is greater than in the lateral direction. The 
relative magnitude of the vertical and horizontal sensitivity is roughly proportional to the elongation of 
the migration point spread response.  Furthermore, the impact of noise on the positional   estimates 
d i m i n i s h e s  rapidly w i t h  i n c r e a s i n g  SNR. 
  

 
 
 
 
 
 

Table 1:  Summary of uncertainty in calibration  errors in two case studies. 
  
Examples 

Case 
Study 

Number 
of 
events 

Depth Of 
Target (ft.) 

SNR 
Range 

Std. 
Dev. X 
error (ft.) 

Std.   
Dev. Y 
error (ft.) 

Std. 
Dev. Z 
error (ft.) 

1 85 7,000 3-10 76 106 116 
2 28 11,000 8-30 51 59 52 
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Case Studies 
 
Table 1 summarizes the analysis of uncertainty in two calibration studies from separate hydraulic 
fracture monitoring surveys in two different shale plays in North America. Both utilized radial surface 
arrays similar to the one used in the synthetic modeling. Approximately 1000 channels were used in 
each; the channel spacing was varied to maintain an aperture twice the depth of interest. In both 
cases, perforation shots were used to calibrate the velocity and static corrections for the array.  Once 
the calibration was determined, the imaged positions of the detected perforation shots were 
compared to the measured location of the gun. The SNR range for the set of shots and the standard 
deviation of the errors are reported. The estimated uncertainties  in positions  may be subject  to a 
systematic bias  as  measured  locations  of  perforation  shots  can  be offset due to errors in 
deviation surveys (see Bulant et al. 2007). 
 
In Case #1, 85 shots were imaged over a pad of 5 lateral wells. Even though all the shots used 
similar charges, the SNR range varied from 3 to 10, with 60% of the shots having a SNR < 5. The 
difference SNR is likely result of variable conversion of charge energy to seismic energy as also 
observed by Chambers et al. (2010). We consider SNR < 5 to be fairly low SNR for calibration. 
Average errors in all three dimensions were less than 30 feet. 
 
In Case #2, 28 shots were imaged over a single lateral well. Although the target here was much 
deeper than the first case, the SNR range is considerably higher, with 78% of the shots having a 
SNR >15. We consider this to be very good SNR for calibration. Average errors in all three 
dimensions were less than 20 feet. 
 
While the positional uncertainties in both cases are larger than those shown in the synthetic model, 
they do show a similar behavior. Case #2 which is characterized by a larger SNR shows a smaller 
uncertainty indicated by a smaller standard deviation of the errors. Case #2 also shows similar 
uncertainties  in  horizontal  and  vertical  directions comparable  to  the  convergence  noted  in  the  
synthetic model. We believe the increased uncertainty compared to the model is due to the need to 
estimate velocity and static corrections and the presence of coherent noise in real data. In both 
cases, the uncertainties reported here were deemed acceptable by the operator. 
 

Conclusions 
 
Signal-to-noise-ratio (SNR) is a key indicator of the uncertainty in migration based imaging of 
microseismic events. Reliability, in terms of the ability to detect the complete set of events is a nearly 
binary function of SNR. Events with SNR above a threshold of 2-3 are readily detected, while events 
with SNR below the threshold are missed.  Positional u n c e r t a i n t i e s    likewise a r e  dr iven b y  
SNR. While vertical uncertainty is more sensitive to noise, both horizontal and vertical uncertainties 
decrease rapidly with increasing SNR. 

 
While SNR can be used to infer the relative likelihood that given event is real, false-alarms will 
occur. Discriminating the real event from the false will require additional information beyond SNR. 
 
While synthetic modeling is useful in assessing the performance   characteristic   of   the   imaging   
method,   a number of simplifying assumptions were made that differ from actual application of the 
method. First, our model assumed that travel-times were known exactly. In practice, velocity and 
static corrections must be estimated from calibration shots (sources at known locations in the 
subsurface).   While travel time errors are most likely to decrease the SNR after migration, long 
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period errors in travel times could cause spurious focusing and add uncertainty.  Secondly, t he  
model  as s um ed  t h e  addi t ive  noise was Gaussian. While this is a reasonable first approximation,   
it does  n o t  t ak e  in t o  ac coun t  c o h e r e n t  noises, which are ubiquitous in surface microseismic 
monitoring.   Appropriate   preprocessing   can   reduce   the impact of coherent noise, but residual 
coherent noise will trigger false-alarms. Moreover, the number of false-alarms rejected in the event 
localization step will likely not be so high, as coherency in the noise will imply some additional 
consistency among triggers not seen in the model. 
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