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Summary  

Consideration of the pore-geometric controls of DC (and low frequency) electrical conduction provides 
a basis for understanding the geometric properties of porous materials that determine single-phase 
Darcy permeability. Conductivity and permeability are both described by the same type of equation and 
have the same distribution of equipotential surfaces and streamlines. The fluid properties of surface-
wetting and viscosity however alter the current density distribution of fluid flow dramatically. An 
equation describing permeability is identical to that describing conductivity with an additional term 
accounting for surface-wetting and viscous interaction. 
 
Introduction 

The single-phase wetting-fluid permeability or absolute permeability is one of the most important 
properties of porous media. Despite its importance, the physical meaning of permeability is often not 
completely understood. The ambiguity in meaning is due to the way it is defined. Permeability appears 
as a proportionality constant in the Darcy flow equation: 
 
 Q = k (P/) (A/L); (1) 
 
where Q is flow rate, k is permeability, P is the applied pressure potential,  is the fluid viscosity, A is 
cross-sectional area of the medium and L is its length. k is the proportionality constant required to 
equate both sides of the equation. It has units of cm2, but for convenience k is usually given in Darcy 
units with one Darcy equaling 9.9 x 10-9 cm2.  The flow equation explicitly accounts for the potential 
field, fluid viscosity and the external dimensions of the medium of interest; but the internal properties of 
the medium are not explicitly stated; hence they are included in an undefined way in the proportionality 
constant, permeability. It is the role of proportionality constant that makes permeability ambiguous in a 
physical sense. 
 
Physical interpretation of permeability 

The flow equation (1) is only one of several such equations all of which describe an equilibrium flux in a 
porous medium in response to a potential gradient. For example, comparable equations can be written 
for DC electrical conductivity and diffusion. Since the flux in each case is present only in the pore space 
of a porous medium (no flux in the solid portion of the medium), the geometry of a potential gradient 
throughout the medium is identical for each. The potential gradient that results from the application of a 
potential field across the medium is only a response to the imposition of the field; the geometry of the 
gradient does not depend on the nature of the potential. The potential gradients for conduction, fluid 
flow and diffusion are identical for a given porous medium. The geometry of the potential gradient can 
be determined by solving Laplace’s equation for the pore geometry of the medium.  
 
The flow equation for electrical conductivity can be expressed by Ohm’s law as 
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 I = f (V/R

w
) (A/L),  (2) 

 
where I is the electric current, f is the formation conductivity factor (reciprocal of Archie’s formation 
resistivity factor), V is the applied electrical potential, R

w
 is the resistivity of the saturating brine and 

A/L is the cross-sectional area-length ratio as in equation (1). f and k are the comparable proportionality 
constants in equations (1) and (2) that reflect the geometry of the potential gradient as determined by 
the pore geometry, but in an unspecified way.  
 
The formation conductivity factor can be separated into two components: a pore volumetric component 
(porosity, ), and a pore geometric component (the geometrical factor, E0), f =  E0. Since the potential 
gradient geometry is the same for fluid flow and conduction, the pore geometric factors must also be 
the same, k  f =  E0. In fact the only difference between k and f is the effects of viscosity and wetting 
of the pore surfaces in the case of fluid flow.  
 
For a cylindrical straight tube or pipe, the effects of surface-wetting and viscous interaction of fluid 
molecules can be determined since they cause the flow-velocity profile to be parabolic. Integration of 
the flow rate across the tube results in the permeability of the tube k = A/8, where A is the cross-
sectional area of the tube. The tube is straight and has 100% porosity so that both geometric and 
volumetric factors are equal to one. In a general porous medium, however, neither are equal to one, 
and the effects of surface wetting and viscosity are also present. The permeability of a porous medium 
must account for all three.  
 
In a porous medium pore throats, particularly the limiting pore throats, are the major determining factor 
of flow rate. If one makes the simplifying assumption that the pore throats in a porous medium are 
cylindrical, then permeability can be made physically explicit. Accounting for wetting of the pore throat 
surfaces, pore volume and pore geometry results in an equation for permeability to a single-phase 
wetting fluid of a porous medium: 
 
 k = (A/8) E0  (3) 

 
One can make other assumptions about the cross-sectional geometry of pore throats and perform the 
integration to arrive at other parameters to replace the A/8 term.  
 
Experimental validation 

If one makes permeability and formation conductivity factor measurements on a sample of a porous 
medium, then the average cross-sectional area of limiting constrictions in the medium can be calculated 
from (3). It can also be estimated from mercury-injection capillary pressure measurements. The two 
estimates can be compared to test the efficacy of equation (3) and the assumptions that went into it. 
Such a test was carried out using data from fifty-two samples of a wide variety of rock-types as given in 
the Shell Rock Catalog. The agreement is remarkable, especially considering the experimental 
differences in the measurements, substantiating the logic used in arriving at equation (3). 
 
Conclusions 
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Permeability is a proportionality constant in the Darcy flow equation. As such it has no intrinsic 
meaning. By default, permeability must account for the effects of porosity, pore geometry and any 
interaction between a flowing fluid and pore surfaces.  
 
The general physics describing the flux through a porous medium in which the flux is restricted to the 
pore-space is the same for electrical conduction, single phase fluid flow and diffusion. All three require 
the same pore-geometric and volumetric parameters. The effects of interaction between the flux and 
pore surfaces is negligible for conduction provided that there is no significant surface conduction. It is 
also likewise negligible for diffusion, provided that the pore space is significantly larger than the size of 
the diffusing particles and there is no adsorption or chemical interaction with pore surfaces. For the flow 
of a wetting fluid, the surface interaction must be accounted for. The surface interaction terms for 
wetting-fluid flow through media with simple geometries such as a cylindrical tube is well known and 
easily calculated.  
 
The proportionality factor in the flow equation for electrical conduction (no surface conduction), the 
formation conductivity factor, requires only pore-geometric information. The formation factor can be 
separated into volumetric and geometric components, f =  E0.  

 
Permeability consists of the same geometric parameters as electrical conduction plus a term 
accounting for surface interaction. Hence k =  E0 S, where S is the surface interaction term. For flow 
through a cylindrical tube or pipe, S = A/8, where A is the cross-sectional area of the tube and  
k = (A/8) E0  
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