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Summary

In this paper, we present an inexact full Newton optimization method for the full waveform inversion
algorithm in the frequency domain which utilizes simultaneous sources based upon the phase en-
coding technique. Tests show that the full Newton minimization method achieves a high convergence
rate and a reasonably accurate reconstruction of the model parameters. Taking advantage of a direct
solver based on LU decomposition, the full Newton minimization method can also be implemented
in a matrix-free manner. Tests with this algorithm were conducted with the BP/EAGE velocity model
and highlight its high performance capabilities.

Introduction

Seismic full waveform inversion’s (FWI) main objective is to retrieve the Earth model that best de-
scribes the observed seismic data, which has lead to its inclusion to the arsenal of methods that
determine subsurface velocity models (Tarantola, 1987; Pratt et al., 1998; Operto et al., 2007; Virieux
and Operto, 2009; Hu et al., 2011). However, a couple of the main problems in FWI that limit its appli-
cation is the computational cost of the inversion for multiple sources and receivers and its tendency
to converge to local minima of its objective function. To solve the latter problem of converging to a
local minima, a good initial velocity model or data with high-quality low frequency components are re-
quired. The computational cost of FWI can be reduced by utilizing simultaneous shooting techniques
(Krebs et al., 2009; Ben-Hadj-Ali et al., 2011), since it is proportional to the number of sources within
the experiment. The basic idea of the simultaneous shot method is to create super-shots through
the summation of individual sources with a random encoding function (Romero et al., 2000). The
drawback of the simultaneous source technique is that it introduces random cross-talk that arises
from the correlation between shots. One way to reduce this cross-talk noise is by generating new
random encoding super-shots in every iteration (Krebs et al., 2009).

FWI in the frequency domain is carried out in a sequential approach by selecting a few frequencies
starting from low to higher frequencies (Sirgue and Pratt, 2004). The inversion result obtained from
the first few frequencies (lower frequencies) is used to initialize the inversion for the next frequencies
(higher frequencies) and so on. In order to reconstruct or invert for the model parameters from the
measured seismic data, gradient based optimization methods such as steepest-descent and non-
linear conjugate gradients or Newtonian methods such as L-BFGS, Gauss-Newton and full Newton
can be implemented. The Newtonian methods generally converge faster than the gradient based
nonlinear conjugate gradient method, but this is at the expense of solving a denser system of linear
equations (Hessian matrix) at each iteration which is computationally expensive. Of the Newtonian
methods, the full Newton method is known to converge faster than the Gauss-Newton or L-BFGS
methods. In this paper, a matrix-free full Newton method for FWI with simultaneous sources using a
phase encoding technique is formulated. For each frequency in the proposed FWI algorithm, a new
random encoding operator is generated. Numerical results on BP/EAGE velocity model (Billette and
Brandsberg-Dahl, 2005) are presented and highlight the numerical efficiency of this method.
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Theory

Full waveform inversion based on lease-squares objective function is the minimization of the l2 norm
of residual between the observed data dobs and the model data dcal,

J(m) =
1
2 ∑

ω

Ns,Nr

∑
s,r

(dcal
s,r (ω)−dobs

s,r (ω))†(dcal
s,r (ω)−dobs

s,r (ω))

+µR(m),

(1)

where † is the complex conjugate transpose, R(m) is the regularization term, µ is the regularization
parameter and, Ns and Nr represent the number of sources and receivers respectively. For the sake
of simplicity, the dependencies of spatial positions are not written explicitly. The minimization of
the objective function, J(m), is achieved through the Lagrangian constrained optimization method
(Plessix, 2006; Akcelik et al., 2002)

minimize
m

J(m)

subject to A(m,ω)ps(ω) = S(ω)s,
(2)

where A(m,ω) is the forward modelling operator, ps(ω) is the wavefield in space and Ss(ω) is the
encoded super-shots. Typically, equation [2] is solved using a direct solver based on an multifrontal
LU decomposition of the finite-difference Helmholtz operator A into a lower and upper LU triangular
decomposition scheme (Amestoy et al., 2001; Schenk and Gartner, 2004). This operator is quite
sparse and, therefore, storable in memory. The main advantage of this method is that once the
decomposition is performed and available for a given angular frequency ω and background velocity,
the complex pressure field is efficiently solved for multiple sources using the forward and backward
substitutions. The modelled data can then computed as dcal

s,r (ω) = rps(ω), where r is a sampling
operator. The encoded super-shots S(ω)s are obtained by

S(ω)s = ΓDRfs(ω), (3)

where fs(ω) is the monochromatic source term, Γ is the phase encoding function (Γ(φ) = e−iφ ,φ ∈
[0,2π]) and DR is the randomization operator that randomly picks the monochromatic sources. Using
the Lagrangian multiplier, λ , the Lagrangian function for FWI with simultaneous sources becomes

L (p,m,λ ) =J(m)+
Nw,Ns

∑
ω,s
〈λs(ω),A(m,ω)ps(ω)−Ss(ω)〉x

+µR(m),

(4)

where 〈,〉x is the scalar product in x. From the first-order optimality conditions and setting ∇Lp,m,λ = 0,
also known as the Karush-Kuhn-Tucker (KKT) conditions, the reduced gradient, g, of the objective
function becomes

g = ((∇mA)ps(ω))λ †
s (ω)+µ∇mR. (5)

From the second-order optimality conditions, the reduced Newton of the objective function becomes

H =((∇mA)ps)
∗(A∗)−1rT rA−1(∇mA)ps +µ∇

2
mR

+K−B∗A−1C−C∗(A∗)−1B,
(6)

where
K = (∇2

mA)ps(ω)λ †
s (ω)

B = (∇mA)∗λs(ω)

C = (∇mA)ps(ω)

λs(ω) = (A∗)−1rT (rpcal(ω)−dobs(ω)).

(7)

GeoConvention 2013: Integration 2

AAPG Search and Discovery Article #90187 © CSPG/CSEG/CWLS GeoConvention 2013, Integration: Geoscience Engineering Partnership, 6-12 May 2013, Calgary, AB, Canada



Note that λs is the backpropagation of the residual wavefields at the receiver positions.
In Newton’s formulation, the model perturbation update is computed by solving the following linear
system of equations

H4m =−g. (8)

The Hessian, H, is a dense and full matrix and, in large scale problems, it is often too expensive to
store or solve using direct solvers. In practice, the model perturbation is computed through iterative
techniques. Here, we adopt the conjugate gradient least-squares (CGLS) method to solve equation
[8]. The CGLS scheme requires only the action of the Hessian on the model perturbation; matrix
vector product, which can be implemented in matrix-fee manner. For a single frequency, once the
matrix A is factorized using LU decomposition, a set of solutions for multiple shots can be achieved
by forward and backward substitutions at a relatively low computational time. Therefore, for each
frequency the matrix A is factorized only once and the action of the full Hessian H on the model
perturbation m is achieved on the fly at each CGLS iteration by the solutions of four forward problems.
In the Newton method, we adopt the early termination of the CGLS iteration and update the model
parameters using a line search method.

Below is the pseudo-code of the inexact full Newton method. Notations: ωg :- data weight, nw :-
number of frequencies within a group frequency nwg. This is only applicable for simultaneous multi-
frequency inversion.

Pseudo code: Multiscale inexact full−Newton method
Start ←m0
do igr = 1, ngw ←over group frequency
Start ←mk
Γ,DR←generate random operators
do k = 1,max_iter
Compute the gradient :

∇mJ(mk) = ∑
nw
iw ωg(iw)∇mJ(mk)iw
−→ solve two forward problems (FP)

4mk =−
[

∑
nw
iw ℜe(H)iw

]−1
∇mJ(mk)

−→ solve using CGLS
−→ solve four FP for each CGLS itet., ω

Update: mk+1 = mk +α4mk
−→ α :- step length

enddo
enddo

Examples

The BP/EAGE velocity model is used to test our FWI algorithm. The original BP/EAGE velocity model
is 67km long and 12km deep and built on a 6.25m x 6.25m grid size. This velocity model was then
re-gridded onto a 100m x 100m spatial grid. Figure 1 [a] depicts the true BP/EAGE velocity model
and Figure 1 [b] shows the initial linearly increasing velocity model (from 1400m/s to 4500m/s) used
for FWI. The synthetic data was generated with a total number of 225 sources and 338 receivers.
For the FWI, a set of nine discrete frequencies were selected from approximately 0.2Hz - 5Hz. In
order to recover the long wavelength components of the velocity model and mitigate the local minima
effects of FWI, one has to start the inversion from very low frequency data. The low frequency data
components for this velocity model inversion have also been used by Hu et al. (2011).
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Figure 1 BP/EAGE velocity model (a), linearly increasing velocity model with depth used as starting
model for inversion (b). (c) and (d) are reconstructed velocity model using simultaneous sources with
15 and 9 super-shots respectively.

For each frequency, a maximum of 20 full Newton iterations were computed. Each conjugate gradient
least-squares was computed with 15 iterations. Figure 1c & d are the reconstructed velocity models
using a total of 15 and 9 super-shots where each super-shot is constructed by randomly encoding
15 and 25 monochromatic sources, respectively. Both numerical inversions reproduce a model that
is quite comparable to the original velocity model. Most notably, both the salt body structures and
shallow anomalies are properly reconstructed. For each inversion frequency, a new random source
and phase encoding operator was generated. These figure images demonstrate our full Newton FWI
algorithm provides very competitive results in terms of resolution and quality of the inverted model.

Conclusion

We present an inexact full Newton full waveform inversion algorithm that uses the simultaneous
sources technique. The full waveform inversion problem is based on a quadratic matrix-free full
Newton method, where the objective function converges aquatically. By utilizing the advantage of a
direct solver based on the LU decomposition of the forward modelling operator, for each frequency,
the operator matrix is factorized only once and the action of the Hessian on the model perturbation
is computed on the fly with the CGLS algorithm. Through tests with the BP/EAGE velocity model, we
demonstrate that the full Newton FWI algorithm can recover an accurate and high resolution image
of the velocity model. In order to speed up the computational time, we adapted the simultaneous
source encoding techniques. The simultaneous source technique reduces the computational cost
proportional to the number of super-shots per every iteration, which in turn reduces the over all cost
drastically, which becomes even more important when dealing with costly three-dimension numerical
simulations.
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