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Summary 
One prevailing assumption in reflection seismology is that the observed trace can be described as a 
convolution of a source wavelet with the Earth’s reflectivity plus some noise. In a conventional 
deconvolution approach one thus estimates a linear deconvolution filter to retrieve the reflectivity series 
from the observed data. This amounts to taking linear combinations of noisy observations and there is 
thus always a trade-off between recovery of the underlying reflectivity series and noise amplification. 
 
Here, we investigate the possibilities of sampling methods to recover the desired reflectivity series. This 
is achieved by specifying an appropriate probability density function sampled by means of Markov 
Chain Monte Carlo (MCMC), thus producing a sparse, nonlinear deconvolution method that is 
potentially less prone to noise contamination. Performance tests on realistic synthetic data show that 
the method is both versatile and reliable. 

Introduction 
Deconvolution is frequently achieved by means of a linear filter. Wiener filtering is one of the most 
commonly applied techniques for wavelet removal as it can be shown to be optimal in a least squares 
sense in terms of Earth's reflectivity recovery versus noise amplification, yet it amounts to taking linear 
combinations of noisy observations. An alternate approach considers that the reflectivity is sparse, with 
a probability density function that can be approximated. This means including statistical assumptions on 
the nature of the reflectivity sequence, an idea that is used by drawing samples of the conditional 
probability function of the reflectivity given the observed data to retrieve the most likely reflectivity 
sequence. Such a reflectivity estimation process is non-linear as it cannot be expressed as a linear 
combination of both the source wavelet and the data, and sparse in the sense of having a considerable 
amount of its elements equals to zero. 
 
The proposed method is a continuation of the work done by Selvage (2008) and Selvage et al. (2009) 
and is an application of a Monte Carlo Markov chain scheme; it yields a random sequence (Monte 
Carlo) of numbers (reflectivity sequence), using a sequential scheme (chain) with a memory of one 
element (Markov property). 

Theory and/or Method 
The Earth’s impulse response to the wavelet acts as a filter and is mathematically expressed as, 
(Yilmaz, 2001): 

               (1) 
where               

  is the recorded trace,               
  the source wave,               

  
the reflectivity sequence,   the added noise and ‘ ’  is the convolution operation. 
In the seismic trace  , presence and absence of reflectors can be reckoned with probability p and (1-p) 
respectively. The magnitude of each reflector follows a zero-mean normal distribution with variance   

 , 
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i.e.       
  , therefore, it is said that the reflectivity   follows a Bernoulli-Gaussian distribution with 

parameters p, 0 and    
 , (Debeye and van Riel, 1990). This is summarized by: 

                  
                       

  ,              (2) 
for every          and with  , the Kronecker delta function. The added noise in equation (1) is a 
zero-mean normally distributed process with variance   

 , i.e.  
    
→        

  . The parameters of the 
Bernoulli-Gaussian distribution are unknown as well as the noise variance; nevertheless, it is assumed 
that the noise level is known and        so that the reflectivity has a unit variance.  
   The probability function in equation (2) is called the prior and does not depend on the data; hence, it 
is natural to demand for a function that includes the recorded data. Conditioning the prior to the 
recorded data renders a distribution    |   called posterior; it is an adjustment of the prior to the data 
and samples will be drawn from it in order to estimate the Earth’s reflectivity.  
Assuming that the wavelet and variances of the noise and the reflector magnitudes are known, the 
posterior and its parameters are completely determined: 
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Continuous sampling from the posterior yields several reflectivity sequences that are then averaged, 
this will be the estimated  ̂     |  . 
 

Schematically, the sampling process starts with an initial reflectivity sequence         
   

   
   

      

   
  

from which the first-iteration reflectivity sequence      is built in an element-wise fashion. The first 
element of the sequence   

    is sampled out from     
   

|   
   

      

   
   , to then draw the second 

element of the sequence   
    from the updated conditional probability     

   
|   

   
   

   
      

   
   . This 

process continues until all the    indexes had been visited. Then, it is said that a cycle has been 
completed. Repeating this process indefinitely yields a sequence of the form:              . The 
elements of this sequence are averaged to obtain the wanted reflectivity estimate  ̂. Such an averaged 
reflectivity minimizes the minimum square error function           ̂   , (Winkler, 1995). 
The sequences obtained using this sampling routine, also known as Gibbs sampling, are random in 
nature, thence the name Monte Carlo, and comply with the property: 
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This transition probability depends only on the immediate state of the chain to generate the next 
element of the chain and not on the whole history of the chain, that is, it has a memory of one iteration. 
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Example 
The method is applied to a realistic synthetic example resembling a 2D-stacked section in a trace-wise 
fashion. Gaussian noise is added to the original data set such that the signal-to-noise ratio is 5. A 
global sparsity parameter        is used. The wavelet is estimated using a kurtosis maximization-
based algorithm (van der Baan, 2008). Here, 500 warm-up, or training cycles are used for the algorithm 
to achieve a Bernoulli-Gaussian distribution, then 250 cycles are deployed in the averaging of the 
reflectivity sequences.  
 
Performance of the method is evaluated by calculation of correlations and the   -norm between original 
data traces and the reconstruction obtained by convolving MCMC-sequences and the estimated 
wavelet. Typical values for such reconstruction evaluation in a particular trace of the 2D-section are 
displayed in Figure 3. For most of the traces,   -norm values are around 0.4 and correlations around 
0.92. 

Conclusions 
MCMC has the advantage that it uses a sampling approach instead of linear filtering and is therefore 
potentially less prone to noise contamination. Here, MCMC is used to produce sparse reflectivity series; 
yet it has many applications to solve a large variety of general inverse problems. It also improves linear 
deconvolution results reducing noise components as they can be used as initialization of the proposed 
MCMC method.  
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Figure 1: Scheme deployed in the non-linear estimation of the reflectivity, after Selvage (2008). 
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Figure 2: Left: A realistic example resembling stacked noisy data. Right: MCMC deconvolution output 

testing a p-value of 0.23, 500 warm-up cycles and 250 iteration cycles. 
 

 
Figure 3:   -norm values and correlations between an original trace (#111) and the reconstruction, using 

the MCMC reflectivity and estimated wavelet, (500 warm-up cycles and 300 iteration cycles.) 
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