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Introduction 
Steam-assisted gravity drainage is an effective recovery method employed in shallow heavy oil 
reservoirs to increase the amount of recoverable oil. To ensure effective recovery, seismic monitoring 
of an active steam flood is essential in delineating the location of stimulated reserves. Typically, large 
and dense 4D reflection surveys are recorded to trace the motion of the steam flood, observable in 
terms of time-shifts and amplitude differences. However, it is proposed that time-lapse refraction 
profiles can be employed to monitor the movement of an active steam flood within a reservoir in a 
manner similar to that of 4D reflection profiles. Through reciprocal traveltime analysis, refraction profiles 
can delineate significant time-shifts within a monitor survey due to the injection of a steam flood. 
Observed time shifts values are dependent on steam chamber dimensions, reaching as high as 25 ms 
for a 60 m thick steam chamber.  

This study will outline the basis for 4D refraction surveying through simple numerical modeling of a 
shallow, heavy-oil reservoir. Modified from an original design proposed by Hansteen et al., (2010), this 
method provides a way to compensate for traveltime differences that might be caused by different shot 
statics between monitor and baseline surveys, hence reducing the uncertainty in the source of 
observed time-shifts recorded at the geophones. 

Method 
Time-lapse refraction surveys were numerically modeled over a schematic reservoir undergoing active 
steam assisted recovery.  For simplicity, surveys were modeled over layer-cake geometry with average 
formation thickness and depth appropriate for a shallow oil sands deposit (Figure 1). The velocity 
structure of the McMurray Formation reservoir is an ideal candidate for a refraction analysis due to the 
large velocity contrast between the McMurray Formation and the underlying high-velocity Devonian 
rocks. The McMurray Formation reservoir was assigned a P-wave velocity of 2200 m/s, and the 
underlying Devonian carbonates a P-wave velocity of 5500 m/s. All formations overlying the McMurray 
formation are referred to as overburden, with a thickness of 20m and an average P-wave velocity of 
1900m/s. (Lines et al., 1990; Bianco, 2008; Eastwood, 1993; Forgues et al., 2006).  
 
The refraction survey modeling consists of a single refraction line with reciprocal shot points and a 
series of single component geophones within the center of the array. To provide sufficient areal 
coverage, 2D refraction lines are recorded in a radial pattern, every 11 degrees. This pattern will 
simulate a large and dense pad of geophones occupying the center portion of the array, overlying the 
steam chamber. Figure 1 shows a schematic model and survey design, and projected ray paths for 
refractions from the underlying Devonian carbonate.  
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Figure 1.  Geological model and survey design. Note that each source location also contains one single 
component geophone. Projected ray paths show both the forward (blue; from shot point A to B) and 
reverse (red; from shot point B to A) refraction profiles.  
 
Refraction surveys are employed pre and post steam injection to record a baseline and monitor survey, 
and for modeling different sized steam chambers. Recorded travel time differences due to the presence 
of steam are observable as time-shifts recorded on first-arrival head waves, and observable through the 
subtraction of baseline survey traveltimes from those recorded by the monitor surveys. By placing a 
geophone at each shot point location, ambiguity is removed from observed time-shifts through the 
subtraction of travel times on the source side of the array, leaving only time-shifts due to steam 
injection. Figure 3 is an example of time shifts due to a 60m thick steam chamber.  

 
 
 
 
 
 
 
 
Figure 2. (a) Schematic time travel chart used for the plus-minus calculations. D = common receiver  
(Chen, 2009).  

Data Interpretation 
To quantify the changes due to simulated steam injection, traveltime values from the baseline survey 
were subtracted from values in each monitor survey, leaving only time-shifts within the reservoir. 
However, this simplistic approach requires further consideration. Traveltime changes observed on a 
monitor survey may be caused by time differences on the source side rather than the presence of a 
steam chamber on the receiver leg of a refraction raypath. For instance, changes on the source side of 
the array, potentially introduced through issues such as changes in source statics, may introduce slight 
time shifts which may be wrongfully attributed to changes within the reservoir. To mitigate this, we 
calculated and removed the traveltimes of the downgoing transmitted wave field from the source point, 
leaving only traveltimes for the headwaves refracting along the Devonian carbonates and propagating 
upward through the reservoir. Removing this component of the traveltime plot decreases the likelihood 
that traveltime changes are due to sources other than steam injection within the reservoir. These travel 
times can be quantified through a calculation of the T+ component, where T+ = TAD + THD – TAH (Figure 
2). In a time-lapse sense, we are comparing differences in T+ traveltimes. Hence, we can effectively 
determine the traveltime for the downgoing portion of the wavefield for each monitor survey, resulting in 
time differences attributable only to the upgoing wavefield through the steam zone 
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Results 
Observed traveltime changes along a modeled 2D refraction line were projected into 3D in an azimuthal 
distribution and plotted in map view (Figure 4a). Due to the symmetry of the model and the applied 
velocity taper, observed time-shifts form a bull`s-eye pattern, showing the extent of the steam chamber 
as well as the reduction in heat with increasing distance from the injection location.  
 
Our modeling was extended from a vertical injector well to a simulate heating via a horizontal SAGD 
well pair. Due to this new geometry, observed traveltimes did not form a bulls-eye pattern, but instead 
reflected the geometry of the horizontal injection well in the area of steam injection (Figure 4b). 

 
  
  
Figure 3. (a) Traveltime chart before the injection of steam. (b) Traveltime chart for a 60m thick, 140m 
long steam chamber after the subtraction of the downgoing wave. (c) Traveltime chart for the forward 
refraction profile showing the traveltime difference between the baseline and monitor survey. (d) 
Reverse profile for the same refraction line.  
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Figure 4 (a) Distribution of time-shifts due to a 60m thick symmetrical steam chamber, 140m wide. 
Velocity values decrease near the edges of the steam chamber due to the reduction of heat with 
distance from the injection location (center). (b) Distribution of time shifts due to a 60m thick 
asymmetrical steam chamber, representing heating through a horizontal injector well. The steam 
chamber is 600m long by 200m wide. 
 

Conclusions 
SAGD is an effective recovery method employed to shallow heavy oil reserves to increase the 

amount of recoverable oil in place. However, to ensure effective recovery, seismic monitoring of an 
active steam front is essential in delineating the location of stimulated reserves. Time-lapse refraction 
profiles can be employed to monitor the movement of an active steam front within a reservoir similar to 
that of 4D reflection profiles. This technique has been previously developed by Hansteen et al., in 2010, 
but has been modified by removing the traveltime of the downgoing wavefield on the source side of the 
array, effectively reducing the uncertainty associated with observed time-shifts. Error values of the 
calculated plus and minus traveltimes are in the range of +/- 1.0 ms, a considerable amount less than 
observed time-shifts from steam injection.  
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