AAPG HEDBERG CONFERENCE "NATURAL GAS GEOCHEMISTRY: RECENT DEVELOPMENTS, APPLICATIONS, AND TECHNOLOGIES" MAY 9-12, 2011 – BEIJING, CHINA ## The Characteristics of Generation and Distribution of CO₂ gas pools in Songliao Basin LUO Xia, WANG Jinghong, MI Jinkui, SUN Fenjin, WANG Shengpeng, WANG Ying, RAN Qinchang RIPED, Petrochina, Beijing, China Gases which include high component of CO_2 are widely distributed in Sonliao basin. 12 gas pools have been found and 65.18 x 10^8 m³ reservoir has been proven up to now. The CO_2 gas pools are mainly distributed in K1q and K1yc in Changling and Xujiaweizi fault depressions. The main characters of CO_2 gas pools are $\delta^{13}C_{CO2}$ >-8‰ and R/Ra=1.9~7.2(Table 1) indicate that the CO_2 in CO_2 gas pools are mainly of magma origin according to 10 of CO_2 gas pools in Songliao Basin. Table 1 Geochemical Characteristics of high Composition of CO₂ gas well in Songliao Basin | Well | Lithology | Formation | Compsition of main components of gas(%) | | Carbon isotope compsiton(‰) | | |---|----------------|-------------------|---|-----------------|-----------------------------|------| | *************************************** | | | CO ₂ | CH ₄ | $\delta^{13}C_{CO2}$ | R/Ra | | QS1 | Sandstone | K_1q^4 | 80.09 | 12.93 | ND | ND | | QS8 | Sandstone | K_1q^4 | 85.55 | 13.39 | -3.92 | ND | | QS10 | Sandstone | K_1q^4 | 80.73 | 1.95 | -3.73 | ND | | QS11 | Sandstone | K_1q^4 | 95.73 | 2.18 | -5.30 | ND | | G6 | Sandstone | K_1q^4 | 90.20 | 4.30 | ND | ND | | G9 | Sandstone | K_1q^4 | 97.05 | 2.65 | -8.44 | ND | | H81-3-1 | Sandstone | K_1q^3 | 94.92 | 2.53 | -8.00 | ND | | H77 | Sandstone | K_1q^4 | 96.14 | 1.71 | ND | ND | | CS4 | Volcanic rocks | K ₁ yc | 69.62 | 22.00 | -7.50 | 2.08 | | CS7 | Volcanic rocks | K ₁ yc | 77.81 | 18.56 | -5.80 | 1.90 | | CS2 | Volcanic rocks | K ₁ d | 93.98 | 4.18 | -6.70 | ND | | CS2 | Volcanic rocks | K ₁ yc | 98.53 | 0.90 | -6.60 | 4.54 | | CS6 | Volcanic rocks | K ₁ yc | 98.69 | 0.41 | -6.30 | 3.78 | | FS9 | Volcanic rocks | K_1yc | 82.49 | 15.96 | -6.15 | ND | | FS9-1 | Volcanic rocks | K ₁ yc | 89.15 | 9.48 | -5.69 | ND | | XS10 | Volcanic rocks | K ₁ yc | 90.41 | 3.76 | -4.43 | ND | | W2 | Sandstone | K_1q^3 | 99.02 | 0.61 | -4.04 | 6.87 | | W4 | Sandstone | K_1q^3 | 89.92 | 9.69 | -8.83 | ND | | W5 | Sandstone | K_1q^3 | 93.43 | 3.74 | -4.95 | 6.3 | | W5 | Sandstone | K_1q^{1+2} | 99.48 | 0.52 | -4.60~-6.07 | ND | | W6 | Sandstone | K_1q^3 | 97.77 | 1.39 | -4.31 | 7.2 | Content: (R is the ³He/⁴He of samples, Ra is the ³He/⁴He of air) Geological background and analysis of fluid inclusion indicate that the CO₂ in Changling, De hui and Gu long etc fault depression are mainly forming lately. The reasons are following. The first is that the fluid inclusions of CO₂ are late period fluid inclusions which are banded occurrence in cracks of transecting quartz grain or transecting widen quartz (Fig 1). Their homogenization temperatures are 120~140°C. So, the forming stage of CO₂ may be mainly between 72Ma and 48 Ma. The formation and distribution of CO₂ are relatives with many kinds of faults including lithosphere faults, crust fractures, basement rifts and overburden faults especially relatives with NE-NNE deep faults which have strike slip motion in late stage (Fig2). These kinds of faults mainly controlled depression formation in early stage and had NE-NNE left-lateral strike slip motion in late stage. Also, volcanic erupted with amazing amount of CO₂ in this stage and the faults became the channel of the CO₂ migration and then prompted the formation of CO₂. Fig 1: Laser Romam spectrum of gas fluid inclusion in lately stage of transecting widen quartz Fig 2: The characters of lately stage faults controlling the distribution of CO₂ in Changling fault depression