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Summary  

Accurate prediction of fluid properties such as oil viscosity, for core, cuttings and even 
contaminated samples, using geochemical proxies correlated to physical measurements of 
viscosity is viable for heavy oil production and exploration activities. Such predictions rely not 
only on high precision geochemical measurement to calibrate proxy methods but crucially on 
accurate, representative viscosity measurements, which often reveal error introduced via sample 
handling and analysis. Here we present multivariate statistical partial least squares (PLS) and 
artificial neural network (ANN) oil geochemistry-viscosity prediction methods as well as a 
storage time viscosity correction (STVC) methodology able to ameliorate core storage effects in 
large legacy viscosity datasets enabling effective correlations of chemical properties and oil 
viscosity. 

 
Introduction 

Modern recovery operations, especially for unconventional resources, rely on accurate 
physical fluid property estimates for prospecting, resource assessment, risking, and optimal 
production. In conventional petroleum fields, in-field variations in oil production as a function of 
oil mobility are primarily controlled by variance in reservoir permeability, which is more hetero-
generous than in situ oil-phase fluid properties; however, the opposite is true in heavy oil and 
super heavy oil fields, where oil viscosity varies laterally and horizontally over short distances 
by orders of magnitude (Adams, 2008; Larter et al., 2008). In these resources, in situ sampling is 
difficult, horizontal wells common and cuttings and sidewall core are the common sample types. 

Lack of core or downhole fluids prohibits collection of representative (unaltered) oil 
samples and small sample volumes or sample aging or contamination dictate that API gravity 
and/or viscosity must be estimated using genetic or statistical models and geochemical analysis. 
Pre-drill fluid property predictions are possible using genetic reactive compositional models 
(e.g., GNAWD, MPath; Trinity or BioClass) or geostatistical extrapolation of large measured API 
gravity or viscosity data sets, but typically these data are unavailable for new development and 
exploration plays. Molecular representation models can predict equation of state parameters, 
directly (e.g., Crampon et al., 2004) or via critical properties (Marreo and Gani, 2001), but need 
specialized models and skilled modelers. Chemical correlations with measured properties using 
multivariate methods, e.g., partial least squares (PLS; Rosipal & Kramer, 2006) and neural 
networks (Qin & McAvoy, 1992) have been applied to complex oil, coal or other systems to 
predict key parameters for many applications. These quick, low cost methods need limited 



Adams, Bennett, Snowdon, Larter 

 2 

measured or analog data and tiny oil samples for the prediction sample set (Koopmans et al., 
1998; Larter et al., 2008).  

Fluid property prediction, especially for viscosity is most important in heavy oil reservoirs 
where up to two orders of magnitude change in viscosity at reservoir conditions occurs within a 
30 m interval. In most cases, no single chemical parameter can correlates to measured viscosity 
of oil across a heavy oil field. We showed earlier (Adams et al., 2008; Larter et al., 2008) that 
complex relationships between geochemical parameters and dead oil viscosity may be resolved 
using multivariate methods. This paper addresses best practices for developing correlations and 
methods for identifying sources of error in large data sets to accurately predict oil viscosity from 
geochem-ical data. The same methods can be applied to predict API gravity; however, we 
caution that using standard correlations to compute viscosity from API gravity are totally 
unreliable for heavy oils!  

 
Method 

For regression of chemical data, PLS is particularly effective when the number of 
independ-ent variables (chemical components) is greater than the number of samples (often the 
case in exploration) and when the independent and predicted variables share a linear correlation. 
Viscosity commonly varies highly non-linearly with heavy oil composition due to its complex, 
often non-Newtonian nature and thus non-linear PLS or non-linear neural networks may best 
predict heavy oil viscosity from oil chemistry. Non-linear PLS, however, is very sensitive to 
starting values and typically does not produce significantly higher quality predict-ions than 
conventional PLS but can account for outliers more effectively (Malthouse et al., 1996). For this 
reason, we commonly apply a simple log transform to the measured viscosity data and use PLS 
methods and multi layer perceptron or radial basis network neural networks (ANN model), 
trained on oil component concentration data and dead oil viscosity (20°C in cP). Although ANN 
methods require more substantial training sets than PLS, ANN can be run with small data sets. 

In this paper, we discuss the advantages and disadvantages of the various methods on large 
datasets of penecontemporaneously analyzed heavy oil geochemical data and a viscosity data set 
from Canadian heavy oilfields. For example, in one study, over 300 solvent extracted oils from 
delineation well core from a heavy oil field were analyzed for SARA, and GC-MS of total 
hydrocarbons. The viscosity of 120 oil samples mechanically extracted from core using a sealed 
vessel compaction driven recovery device(Larter et al., 2006) were measured using a Brookfield 
viscometer. The maturity and source rock facies variations of the oil charge are comparatively 
uniform in this dataset but the reservoir core was stored frozen under standard storage conditions 
for a variable time of 2 to ~1800 days prior to mechanical oil extraction and viscosity 
measurement. Oil API gravities vary from 7.7 to 11 degrees, dead oil viscosities(20C) as vary 
from ~3000 to 3,000,000 cP and biodegradation levels from 5 to 6(Peters and Moldowan scale).  

Statistical predictions of viscosity from oil chemistry rely on accurate viscosity measure-
ments to calibrate proxy correlations and an adequate number of precise chemical parameters to 
span the whole range of compositions in the sample set (e.g., biodegradation can remove key 
components from some oils) and account for the processes causing variability in oil chemistry 
and, viscosity (maturity and facies, biodegradation and sample storage effects). Measured oil 
viscosity is a function of not only intrinsic oil charge chemistry and in reservoir alteration, but 
also the storage conditions and duration, sample collection, contamination and processing and 
measurement (Adams, 2008; Adams et al., 2008). Volatilization of light end hydrocarbons 
(LEH) during core storage, handling, extraction and oil cleaning significantly affects measured 
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viscosity. Heavy oil core, stored frozen, loses LEH systematically with time, causing order of 
magnitude increases in bitumen viscosity over 1 year, while relative viscosities in a vertical 
reservoir profile are maintained. As standard centrifugation of core to extract oil often volatilizes 
LEH, compaction-based bitumen extraction (Larter et al., 2006) was used to obtain viscosity 
data. 

In addition, experiments investigating contamination of bitumen samples show that even 
small quantities of dispersed water and reservoir solids can significantly affect measured 
viscosity. These findings are consistent with the correlation of heavy oil viscosity with solid 
content defined as asphaltenes and the proportion of solid maltenes at < 323 K (Hasan et al., 
2009) that support the rheological model of heavy oil as “a dispersion of non-interacting uniform 
rigid spherical particles in a Newtonian fluid”. This non-Newtonian behavior at low temperatures 
may cause viscosity to vary by a factor of 2 to 5 or more with measurement shear rate due to 
shear thinning. Geochemists need to be aware of these analytical pitfalls in “routine” viscosities.  

Proper selection of oil samples representative of produced oil is crucial for viscosity-
chemistry calibration data sets but can be challenging due to different sample types and storage 
and sample preparation procedures prior to viscosity measurement and geochemical analysis. Oil 
components, tracking oil maturity, source rock facies, in reservoir alteration and LEH recharge, 
etc., are the dominant parameters in most correlations and thus must be accurately measured. For 
heavy oils, this means careful LEH retention or assessment of LEH loss during sampling, water 
removal, then accurate hydrocarbon and thioaromatic separation, with good resolution of key 
parameters usually by GCMS and quantification with sufficient internal standards to produce 
accurate, precise concentration data. Our experience is that the thioaromatic compounds are key 
and thus “total hydrocarbon” analyses have been found to be more effective than analysis of LC 
separated saturated and aromatic hydrocarbon fractions. Quantitative total hydrocarbon fractions 
were analyzed by GCMS using internal and recursive standards (Bennett et al., 2009).  

Correlations between fluid properties and geochemical data can be developed with similar 
success using component concentrations or parts of, or whole, chromatograms of key 
components as time series datasets. Ratios of geochemical components are widely reported in the 
literature, but PLS regression assumes linear additivity (i.e., variables or concentrations when 
summed are additive), a condition ratios do not honor. In general peak ratio geochemistry is of 
limited value in predictive geochemistry and with routine accurate quantitation now available it 
is no longer as necessary. Here concentrations of aromatic, thioaromatic hydrocarbons and 
saturated hydrocarbon biomarkers were used as correlation proxies with the lighter aromatics 
excluded due to volatility and variable loss during storage. To minimize variability related to 
experimental drift in large datasets data transformation by autoscaling concentrations (Pirouette 
by Infometrix) or aligning chromatograms is important. To ensure calibration samples span the 
full compositional range of the prediction set, hierarchical cluster analysis (HCA) and Principal 
Component Analysis (PCA) were applied to define the most characteristic variables. Here only 
core oil was used, but different sample types can be used in calibration or prediction datasets if 
all part of a single population. 

Clearly errors in viscosity data will be present in any large dataset collected over a period 
of time reflecting variable storage and extraction histories. In this case, individual viscosity 
values varied by up to 30-80% from “true values” equivalent to drill time dead oil viscosity 
(DTDV) due to long sample storage times and centrifugation. To compare these data, a 
correlation curve between equivalent compaction and centrifuge extracted oils was use to correct 
centrifuged oil viscosities. A method to correct measured oil viscosities of stored core to 
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equivalent dead oil viscosity at drilling time called the storage time viscosity correction (STVC) 
was developed (Adams et al., 2008). The best algorithm for STVC varies with the natural 
logarithm of storage time given binary end member mixing of light end and heavy end fraction 
viscosities consistent with published algorithms of diffusive mass transport through polymers 
and oil spill evaporation. A similar correction for viscosity using sample storage time as a 
dependent variable via PLS regression, as described below, is possible using the fraction of the 
oil not susceptible to evaporation correlated to measured viscosity of fresh oils (short storage 
time). This PLS method can correct for storage time, mud contamination and sample type (e.g., 
produced oil, cuttings, core etc) when estimating viscosity from non-ideal calibration data. 
 
Results 

The PLS models using the whole training dataset of oil component concentrations 
predicted the measured viscosity over the whole viscosity range(5 decades) with RMSE of 
139,187 cP. Inclusion of storage time and relative depth from the top of the bitumen pay zone 
plus removal of the 11 statistical outliers improved prediction accuracy (RMSE = 72,541 cP), but 
removal of 30 samples with storage time longer than 200 days (old samples) most significantly 
improved the model (RMSE = 31,503 cP; best fit model). The best fit model predicts reasonably 
accurate dead oil viscosity values across this field in the training set(predominantly oils with 
viscosities >>100,000 cP) and with the inclusion of storage time allows for prediction of DTDV 
at 30 days for all the samples including the additional 200+ chemistry only samples and 30 old 
samples. Including STVC viscosities of the oil samples in the training set did not significantly 
improve predictions. Using chromatograms in place of the concentration data also provided good 
results for the fresher viscosities because of additional chemical information in small peaks not 
included in the concentration dataset. Chromatograms can be used more reliably in data sets with 
uniform maturity and oil sources as well as sample handling and storage time, especially if internal 
standards have not been used. The PLS models poorly predicted the most degraded, high 
viscosity samples in the data set because of the non-linear variation of chemical composition 
with viscosity. In the most degraded oils, the key parameters controlling the PLS model like 
dibenzothiophene had been removed by biodegradation, such that either additional calibration 
data were needed to refine the linear regression or a separate PLS model was needed to predict 
viscosity > 400,000 cP. 

Generally good linear fits of observed and predicted viscosities are obtained with the ANN 
model trained on 30-day DTDV data set. The best equivalent ANN model included both relative 
depth and sample storage time, and better predicted the highest viscosities (RMSE ~9500 cP), 
possibly due to the model’s non-linear basis. The ANN model produced similarly accurate 
results using only a subset of the aromatic hydrocarbon data, which could save on analytical 
costs. Comparisons of predicted and measured viscosity in a few vertical well profiles showed that 
STVC estimated 30-day DTDV match the estimated PLS 30-day and ANN 30-day DTDV.  
 
Conclusions 

The accurate prediction of oil mobility is crucial for effective exploration and optimization of 
production strategies especially in biodegraded heavy oil and bitumen reservoirs which exhibit 
great fluid property heterogeneity., To build representative geochemical viscosity prediction 
models to represent subsurface oil variability and which are not susceptible to sample handling and 
analytical effects, careful, consistent analytical and data processing procedures must be followed. 
Legacy viscosity data sets typically need correction, thus the STVC model was validated with the 
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independently determined PLS DTDV 30 days. Multivariate statistical PLS and ANN regression 
models of heavy oil composition, based on GCMS molecular geochemistry data accurately 
predicted a wide range of dead oil viscosities (1000 to 106 cP) stored for times up to 4 years. The 
best model required storage time and sample relative depth as variables and exclusion of samples 
stored for > 6 months. Similar studies with smaller datasets and fresh samples typically produce 
DTDV predictions with accuracies better than 5-10% allowing for assessment of the viability of 
heavy oil and bitumen field development, especially for cold production operations (DTDV << 
100,000 cP) and in areas where representative liquid oil samples are unavailable. In general, long 
term analytical data quality and reproducibility, the biogeochemical complexity of biodegradation 
and the magnitude of sample storage effects are the ultimate limits on viscosity prediction using 
geochemical data. 
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