Helen Lewis¹, Gary D Couples², Mark Reynolds², Nenad Bicanic³, Christopher Pearce³, Mohamed Rouainia⁴
(1) Heriot Watt University, Edinburgh, United Kingdom (2) Heriot-Watt University, Edinburgh, United Kingdom
(3) Dept. of Civil Engineering, University of Glasgow, Glasgow, United Kingdom (4) Dept. of Civil Engineering,
University of Newcastle, Newcastle Upon Tyne

Upscaling Fluid-Flow and Mechanical Properties in Coupled Matrix+Fractures+Fluids
Systems of the HYDRO-DDA Approach

Geomechanical effects can be significant in many reservoirs, and can be represented in reservoir simulation by
(loose or tight) coupling between the geomechanical and flow simulators. As always, there is a scale issue: cell sizes are
controlled by the available computational power and the user’s patience/budget. In this paper, we demonstrate the
feasibility of calculating coupled upscaled flow and mechanical properties for geological systems composed of realistic
configurations of fracture-bounded porous blocks of rock. We consider single-phase flow (simulated by HYDRO, based on
the finite element method). Geomechanical processes are simulated by DDA (Discontinuous Deformation Analysis),
which is a type of discrete element system. The integrated simulation environment, HYDRO-DDA, allows us to represent
fluid flow through systems of matrix blocks and their bounding, open fractures. Mechanical loads are applied to that
system of blocks, and hydraulic boundary conditions are applied to the fluid system. Fluid pressures influence the
fracture apertures, and the geomechanical deformations alter the porosity and permeability distributions, which in
turn alter the fluid pressures and the resulting flow. One of the systems studied is a “seal” layer that is flexed while
subjected to a fluid pressure gradient (representing a top-seal above a reservoir layer below). The effective (bulk)
permeability of the fractured seal layer is a function of the fluid pressure gradient, as expected, but the relationship
is non-linear with multiple maxima and minima. Variations in mechanical loading also are important. The HYDRO-DDA
approach can develop continuum-scale, coupled flow and mechanical representations that capture underlying
discontinuum physics.